化工学报 ›› 2018, Vol. 69 ›› Issue (4): 1537-1546.doi: 10.11949/j.issn.0438-1157.20170873

• 表面与界面工程 • 上一篇    下一篇

柱面螺旋槽气膜密封微尺度流动场稳态特性分析

丁雪兴, 贺振泓, 张伟政, 陆俊杰, 苗春昊   

  1. 兰州理工大学石油化工学院, 甘肃 兰州 730050
  • 收稿日期:2017-07-07 修回日期:2017-09-28 出版日期:2018-04-05 发布日期:2018-04-05
  • 通讯作者: 贺振泓 E-mail:hezhenhong10@163.com
  • 基金资助:

    国家自然科学基金项目(51565029)。

Parameters analysis of steady micro-scale flow of cylindrical spiral groove dry gas seal

DING Xuexing, HE Zhenhong, ZHANG Weizheng, LU Junjie, MIAO Chunhao   

  1. College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, China
  • Received:2017-07-07 Revised:2017-09-28 Published:2018-04-05 Online:2018-04-05
  • Supported by:

    supported by the National Natural Science Foundation of China (51565029).

摘要:

针对燃气轮机转子振动较大的特点,提出一种新型柱面螺旋槽气膜密封。利用考虑滑移边界条件下的微尺度效应稳态柱面雷诺方程,求解柱面气膜的压力的近似解析解,获得柱面螺旋槽气膜量纲1浮升力、泄漏量以及摩擦转矩,并讨论了工况参数和螺旋槽结构参数对稳态性能的影响。综合考虑参数对稳态特性的影响,提出优化结构参数。结果表明:密封压差对稳态特性的影响要远大于偏心率。在不同的偏心率下,螺旋槽槽数对浮升力的影响不明显,随着槽数的增加,摩擦转矩升高,泄漏量降低并在槽数n=12左右趋于稳定;随着槽深的增大,浮升力呈下降趋势,摩擦转矩和泄漏量相应增大;随着密封宽度增大,浮升力呈上升趋势,但偏心率不同,上升幅度不同;泄漏量在密封宽度L=0.035 m处基本稳定。螺旋角的增大导致了浮升力的下降,摩擦转矩和泄漏量呈上升趋势。在密封压差的作用下,摩擦转矩随着4种结构参数的增大而上升。槽数增大导致浮升力下降,与槽深的影响刚好相反。随着密封宽度的增加浮升力先降低后升高,与螺旋角的影响刚好相反。槽数和密封宽度的增加导致泄漏量快速下降至稳定值。提出优化的结构参数如下:槽数n=12~18,密封宽度L=0.03~0.045 m,螺旋角a=40°~50°。

关键词: 柱面螺旋槽密封, 微尺度, 工况, 结构参数, 稳态特性

Abstract:

A new-type of cylindrical spiral dry gas seal was employed in gas turbine with large vibration. In order to investigate the performance of the cylindrical gas seal, the approximate analytic solution of the gas pressure was obtained by the methods of PH linearization and iteration, which was deduced from the steady micro-scale cylindrical Reynolds equation with the slip boundary conditions. According to the related formulas, the dimensionless buoyancy, leakage and friction torque of cylindrical spiral gas film were analyzed with the different operation conditions and groove structural parameters. Furthermore, part of the optimized structural parameters of spiral groove was proposed based on the comparison of the steady characteristics. It is indicated that the influence of pressure difference on the steady characteristic is more significant than the eccentricity ratio. The influence of the groove number(n) on the buoyancy is not obvious. The friction torque increases with the increase of the groove number but the leakage decreases to a stable value when n=12. The buoyancy decreases with the increase of the groove depth, which is opposite to the friction torque and leakage. With the increase of the seal width(L), the leakage get stable at L=0.035 m. The increase of the spiral angle leads to the decrease of the buoyancy but the increase of the friction torque and leakage. The friction torque increases with the structural parameters under the pressure difference. The increase of the groove number leads to the decrease of the buoyancy, which is opposite to the influence of groove depth. The buoyancy decreases at L=0.04 m then increases with the increase of the seal width, which is opposite to the influence of spiral angle. The increase of the groove number and seal width lead to the robust decrease of the leakage. Optimized structural parameters are obtained: n=12-18, L=0.03-0.045 m, a=40°-50°.

Key words: cylindrical spiral groove seal, micro-scale, working condition, structural parameters, steady characteristics

中图分类号: 

  • TB42
[1] 沈心敏, 刘雨川, 马纲. 航空燃气轮机摩擦学[M]. 北京:北京航空航天大学出版社, 2008. SHEN X M, LIU Y C, MA G. Tribology for Aero-Gas Turbine Engines[M]. Beijing:Beihang University Press, 2008.
[2] MAYHEW E R, BILL R C, VOORHEES W J. Military engine seal development:potential for dual USE[C]//30th Joint Propulsion Conference and Exhibit, Joint Propulsion Conferences. AIAA-94-2699.
[3] 黄学民. 刷式密封中的泄漏流动和传热的数值研究[D]. 北京:北京航空航天大学, 1999. HUANG X M. A numerical study of leakage flow and heat transfer in a brush seal[D]. Beijing:Beihang University, 1999.
[4] GEOFFRY S, PSARANTA D. Application of CFD to gas turbine engine secondary flow systems-the labyrinth seal[C]//Joint Propulsion Conference. AIAA-88-3203.
[5] STEINETZ B M, HENDRICKS R C, MUNSON J. Advanced seal technology role in meeting next generation turbine engine goals[C]//Rto Meeting. AVT-PPSPaper No. 11, 1998.
[6] CHUUP E R, HENDRICKS C R, LATTIME B S, et al. Sealing in turbomachinery[J]. Journal of Propulsion Power, 2006, 22(2):313-349.
[7] DENECKE J, FARBER J, DULLENKOPF K, et al. Interdependence of discharge behavior, swirl development and total temperature increase in rotating labyrinth seals[C]//ASME Turbo Expo 2008. 2008.
[8] 魏统胜, 郝点, 于海明, 等. 迷宫密封气流激振效应对转子振动响应影响的实验研究[J]. 石油大学学报(自然科学版), 2000, 24(3):70-72, 75. WEI T S, HAO D, YU H M, et al. Experimental investigation on rotor-dynamic characteristics stimulated by airflow in labyrinth seals[J]. Journal of the University of Petroleum (Edition of Natural Science), 2000, 24(3):70-72, 75.
[9] 刘卫华, 林丽, 朱高涛. 迷宫密封机理的研究现状及其展望[J]. 流体机械, 2007, 35(2):35-39. LIU W H, LIN L, ZHU G T. Current situation of the research and development of the mechanism of labyrinth seal[J]. Fluid Machinery, 2007, 35(2):35-39.
[10] 李志刚, 郎骥, 李军, 等. 迷宫密封泄漏特性的试验研究[J]. 西安交通大学学报, 2011, 45(3):48-52, 64. LI Z G, LANG J, LI J, et al. Experiment on leakage flow characteristics of labyrinth seal[J], Journal of Xi'an Jiaotong University, 2011, 45(3):48-52, 64.
[11] LATTIMES, STEINETZ B. Turbine engine clearance control systems:current practices and future directions[R]. 2002, National Aeronautics and Space Administration, Glenn Research Center, Report No. NASA/TM-2002-211794.
[12] PYCHYNSKI T, HOFLER C, BAUER H J. Experimental study on the friction contact between a labyrinth seal fin and a honeycomb stator[J]. Journal of Engineering for Gas Turbines and Power, 2016, 138:06250-1.
[13] FRACZEK D, WROBLEWSKI W, BOCHON K. Influence of honeycomb rubbing on the labyrinth seal performance[J]. Journal of Engineering for Gas Turbines and Power, 2017, 139:012502-1.
[14] 张明. 旋转机械高性能密封技术研究与应用[D]. 北京:北京化工大学, 2011. ZHANG M. Research and application of high performance sealing technology for rotating machinery[D]. Beijing:Beijing University of Chemical Technology, 2011.
[15] TONG F, WANG Y H, ZHU H T. Numerical investigation on the leakage characteristics of stepped labyrinth seal[C]//2016, IEEE/CSAA International Conference on Aircraft Utility Systems, 978-1-5090-1087-5/16.
[16] 余宝瑛, 彭旭东, 孟祥凯, 等. 不同形状方向性型孔液体润滑端面密封性能对比[J]. 化工学报, 2014, 65(6):2202-2210. YU B Y, PENG X D, MENG X K, et al. Comparison on seal performance of liquid-lubricated end face seals with different shapes inclined dimples[J]. CIESC Journal, 2014, 65(6):2202-2210.
[17] FAIRUZ Z M, JAHN I. The influence of real gas effects on the performance of supercritical CO2 dry gas seals[J]. Tribology International, 2016, 102:333-347.
[18] ZHOU J, FAN H, SHAO C. Experimental study on the hydrodynamic lubrication characteristics of magnetofluid film in a spiral groove mechanical seal[J]. Tribology International, 2016, 95:192-198.
[19] 陆建花, 孙见君, 陈卫, 等. 自泵送机械密封与螺旋槽机械密封的性能比较[J]. 化工学报, 2016, 67(10):4370-4377. LU J H, SUN J J, CHEN W, et al. Performance comparison of self-pumping and spiral groove mechanical seals[J]. CIESC Journal, 2016, 67(10):4370-4377.
[20] 马纲, 栗秀花, 沈心敏, 等. 柱面气膜密封界面结构与性能分析[J]. 航空动力学报, 2011, 26(11):2610-2616. MA G, LI X H, SHEN X M, et al. Analysis of performance and interface structure of cylinder gas film seal[J]. Journal of Aerospace Power, 2011, 26(11):2610-2616.
[21] CHILDS D W, GRAVISS M, RODRIGUEZ L E. Influence of groove size on the static and rotodynamic characteristics of short, laminar-flow annular seals[J]. Journal of Tribology, 2007, 129(2):398-406.
[22] SHAPIRO W, WALOWIT J. Numerical analytical experimental study of fluid dynamic forces in seals[R]. NASA CR, 2004.
[23] GRAVISS M S. The influence of a central groove on static and dynamic characteristics of an annular liquid seal with laminar flow[D]. Kansas:Texas A & M University, 2005.
[24] SALEHI M, HESHMAT H. Evaluation of large compliant foil seals under engine simulated conditions[R]. AIAA-2002-3792.
[25] SALEHI M, HESHMAT H. Performance of a compliant foil seals in a small gas turbine engine simulator employing a hybrid foil/ball bearing support system[J]. ASLE Trans., 2001, 44(3):458-464.
[26] 陈秀琴, 朱维兵, 王和顺. 干气密封技术研究现状及发展趋势[J]. 液压与气动, 2008, 2:52-55. CHEN X Q, ZHU W B, WANG H S. Research status and developing trend of dry gas seal technique[J]. Chinese Hydraulics and Pneumatics, 2008, 2:52-55.
[27] RUAN B. Numerical modeling of dynamic sealing behaviors of spiral groove gad face seals[J]. Journal of Tribology, 2002, 124(1):186-195.
[28] 马纲, 罗海先, 沈心敏. 端柱面组合气膜密封系统稳态特性数值模拟与分析[J]. 航空动力学报, 2015, 30(1):22-28. MA G, LUO H X, SHEN X M. Numerical simulation and analysis of steady-state performances for face and cylinder gas film seal system[J]. Journal of Aerospace Power, 2015, 30(1):22-28.
[29] 马纲, 何军, 孙晓军, 等. 非线性数值模拟柱面气膜密封动态特性[J]. 航空动力学报, 2014, 29(1):1-8. MA G, HE J, SUN X J, et al. Nonlinear numerical simulation for dynamic characteristic of gas cylinder film seal[J]. Journal of Aerospace Power, 2014, 29(1):1-8.
[30] CHEN T, LIU M H. Theory of cylindrical gas film seal[J]. Applied Mechanics and Materials, 2014, 602-605:375-378.
[1] 邹慧明, 王英琳, 李旋, 唐明生, 田长青. R290直线压缩机变工况制冷性能[J]. 化工学报, 2021, 72(S1): 342-347.
[2] 赵兰萍, 郭本涛, 杨志刚. 车用热泵内部冷凝器结构对性能的影响[J]. 化工学报, 2021, 72(9): 4616-4628.
[3] 孙雪剑, 宋鹏云, 毛文元, 邓强国, 许恒杰, 陈维. 考虑密封环材料属性和表面形貌干气密封启停阶段的动态接触特性分析[J]. 化工学报, 2021, 72(8): 4279-4291.
[4] 姜洪鹏, 白敏丽, 高栋栋, 高林松, 吕继组. 超疏水/亲水性结构表面流动沸腾传热实验研究[J]. 化工学报, 2021, 72(8): 4093-4103.
[5] 贺征宇, 彭本利, 苏风民, 纪玉龙, 马鸿斌. 微纳结构超疏水表面参数影响含不凝气蒸汽冷凝传热的理论分析[J]. 化工学报, 2021, 72(5): 2570-2577.
[6] 张秦意, 杨晓宏, 邓洪玲, 胡俊虎, 田瑞. 基于响应面法光热-光电膜蒸馏系统优化研究[J]. 化工学报, 2021, 72(4): 2156-2166.
[7] 王法军, 黄晋培, 徐建鸿. 微反应器内红色基KD重氮化反应动力学研究[J]. 化工学报, 2021, 72(2): 984-992.
[8] 田朋,王德武,王若瑾,唐猛,郝晓磊,张少峰. 摇摆流化床的气固流动特性[J]. 化工学报, 2021, 72(10): 5102-5113.
[9] 盛磊, 李培钰, 牛宇超, 贺高红, 姜晓滨. 微尺度过程强化的结晶颗粒制备研究进展[J]. 化工学报, 2021, 72(1): 143-157.
[10] 李光晓,刘塞尔,苏远海. 微尺度内液-液传质及反应过程强化的研究进展[J]. 化工学报, 2021, 72(1): 452-467.
[11] 詹宏波, 郑文远, 文涛, 张大林. 微尺度通道内R134a的冷凝传热实验研究[J]. 化工学报, 2020, 71(S1): 83-89.
[12] 詹飞龙, 丁国良, 庄大伟, 张浩, 武滔, 叶向阳. 析湿工况下翅片管式换热器表面粉尘沉积过程的数值模型[J]. 化工学报, 2020, 71(5): 1986-1994.
[13] 李晨莹, 刘琳琳, 张磊, 顾偲雯, 都健. 不确定性下基于多工况优化的可控性换热器网络综合[J]. 化工学报, 2020, 71(3): 1154-1162.
[14] 李莹莹, 邓谦谦, 刘浩, 刘其春, 顾正桂, 王昉. 新型丝素复合膜的微结构表征及热稳定性[J]. 化工学报, 2020, 71(1): 388-396.
[15] 邹瀚影,冯妍卉,邱琳,张欣欣. 十八烷酸热传导机制的尺度效应研究[J]. 化工学报, 2019, 70(S2): 155-160.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张宇,周力行,魏小林,盛宏至. 进口甲烷再燃烧对煤粉燃烧以及NOx生成影响的数值模拟[J]. CIESC Journal, 2005, 13(3): 318 -323 .
[2] 刘亚青, 赵贵哲. 三聚氯化磷腈微胶囊阻燃剂/聚丙烯复合材料的性能研究[J]. CIESC Journal, 2007, 15(3): 429 -432 .
[3] Pallab Ghosh. 用不可逆过程热力学模型估算通过纳米过滤膜电解质和有机化合物的分离[J]. CIESC Journal, 2003, 11(5): 583 -588 .
[4] 杜红彬, 滕虎, 姚平经. 正交小波(包)的矩阵表达[J]. CIESC Journal, 2002, 10(6): 701 -705 .
[5] 冀秀玲, 张金利, 李(韦华), 韩振亭, 王一平. 基质穿膜作用对苯酚生物降解动力学的影响[J]. CIESC Journal, 2003, 11(2): 151 -155 .
[6] 丁百全, 李涛, A.A.C.M. Beenackers, C.P.van der laan. 浆态床反应器中费-托合成的综述[J]. CIESC Journal, 2000, 8(3): 255 -266 .
[7] 高倩, 阎威武, 邵惠鹤. 一种新颖的鲁棒动态数据校正方法[J]. CIESC Journal, 2007, 15(5): 698 -702 .
[8] 王淑梅, 于养信, 高光华. 气体透过碳膜的非平衡动力学模拟研究
[J]. CIESC Journal, 2006, 14(2): 164 -170 .
[9] 周笑鹏, 史清洪, 邢新会, 孙彦. 快速纯化在大肠杆菌中表达的增强型绿色荧光蛋白
[J]. CIESC Journal, 2006, 14(2): 229 -234 .
[10] 李鸿仪. 气体和气体混合物的单参数状态方程[J]. CIESC Journal, 2000, 2(2): 163 -166 .