化工学报 ›› 2022, Vol. 73 ›› Issue (11): 4938-4947.DOI: 10.11949/0438-1157.20221047
刘冉1(), 李杰1, 王玉兵1,2, 詹洪波2, 张大林1()
收稿日期:
2022-07-26
修回日期:
2022-09-10
出版日期:
2022-11-05
发布日期:
2022-12-06
通讯作者:
张大林
作者简介:
刘冉(1998—),女,硕士研究生,liuranl@nuaa.edu.cn
Ran LIU1(), Jie LI1, Yubing WANG1,2, Hongbo ZHAN2, Dalin ZHANG1()
Received:
2022-07-26
Revised:
2022-09-10
Online:
2022-11-05
Published:
2022-12-06
Contact:
Dalin ZHANG
摘要:
建立了采用空气射流冲击冷却方法的冷凝换热实验系统,对R134a在铝质微小菱形离散肋通道中的冷凝换热特性进行了实验研究。实验工况范围为制冷剂干度0~1、饱和压力0.50~1.50 MPa、制冷剂质量流率160~380 kg/(m2·s)、热通量10.1~59.8 kW/m2。实验获得了不同工况下的通道局部冷凝传热系数,分析了干度、饱和压力、质量流率以及热通量对冷凝换热的影响规律。实验结果表明:局部冷凝传热系数随干度、质量流率和局部热通量的减小而减小,随饱和压力的降低而增大,其中在干度x>0.4的区域内质量流率对于冷凝传热系数的影响效果更为明显。基于实验数据,提出了一个适用于本实验中微小菱形离散肋通道的冷凝换热计算公式。
中图分类号:
刘冉, 李杰, 王玉兵, 詹洪波, 张大林. 微小菱形离散肋通道中R134a的冷凝换热实验研究[J]. 化工学报, 2022, 73(11): 4938-4947.
Ran LIU, Jie LI, Yubing WANG, Hongbo ZHAN, Dalin ZHANG. Experimental study on condensation heat transfer of R134a in mini channel with micro diamond fins[J]. CIESC Journal, 2022, 73(11): 4938-4947.
θ/(°) | SL/mm | ST /mm | Sg/mm | Wf /mm | Lf /mm |
---|---|---|---|---|---|
60 | 1.73 | 2.00 | 1.00 | 1.00 | 1.73 |
表1 微小菱形离散肋通道菱形肋片尺寸
Table 1 Structure size of mini channel with micro diamond fins
θ/(°) | SL/mm | ST /mm | Sg/mm | Wf /mm | Lf /mm |
---|---|---|---|---|---|
60 | 1.73 | 2.00 | 1.00 | 1.00 | 1.73 |
GR134a/(kg/(m2·s)) | Psat/kPa | q/(kW/m2) |
---|---|---|
160 | 500,700,900,1100,1300,1500 | 9.3~42.1 |
210 | 500,700,900,1100,1300,1500 | 9.6~46.5 |
260 | 500,700,900,1100,1300,1500 | 10.1~55.1 |
310 | 500,700,900,1100,1300,1500 | 10.3~56.8 |
360 | 500,700,900,1100,1300,1500 | 10.4~59.8 |
表2 冷凝实验工况范围
Table 2 Range of condensation experimental working conditions
GR134a/(kg/(m2·s)) | Psat/kPa | q/(kW/m2) |
---|---|---|
160 | 500,700,900,1100,1300,1500 | 9.3~42.1 |
210 | 500,700,900,1100,1300,1500 | 9.6~46.5 |
260 | 500,700,900,1100,1300,1500 | 10.1~55.1 |
310 | 500,700,900,1100,1300,1500 | 10.3~56.8 |
360 | 500,700,900,1100,1300,1500 | 10.4~59.8 |
图5 实验值与射流冲击传热系数经验公式计算值比较
Fig.5 Comparison between experimental values and calculated values by empirical formula of jet impingement heat transfer coefficient
设备 | 测量范围 | 精度 |
---|---|---|
科里奥利质量流量计(制冷剂) | 0~50 kg/h | 0.0025 |
科里奥利质量流量计(空气) | 0~500 kg/h | 0.0025 |
绝对压力传感器 | 0~16 bar | 0.2%FS |
压差传感器 | 0~60 kPa | 0.2%FS |
T型热电偶 | -200~350℃ | ±0.2℃ |
表3 数据测量设备的测量范围及精度
Table 3 Measuring range and precision of data measuring equipment
设备 | 测量范围 | 精度 |
---|---|---|
科里奥利质量流量计(制冷剂) | 0~50 kg/h | 0.0025 |
科里奥利质量流量计(空气) | 0~500 kg/h | 0.0025 |
绝对压力传感器 | 0~16 bar | 0.2%FS |
压差传感器 | 0~60 kPa | 0.2%FS |
T型热电偶 | -200~350℃ | ±0.2℃ |
计算参数 | 不确定度计算公式 | 计算结果 |
---|---|---|
干度 | 1.60% | |
局部热通量 | 3.20% | |
局部冷凝传热系数 | 10.10% |
表4 计算参数不确定度计算方法及结果
Table 4 Calculation method and results of uncertainty of calculation parameters
计算参数 | 不确定度计算公式 | 计算结果 |
---|---|---|
干度 | 1.60% | |
局部热通量 | 3.20% | |
局部冷凝传热系数 | 10.10% |
图8 干度、饱和温度、饱和压力、壁面温度、热通量及冷凝传热系数沿程分布
Fig.8 Distribution of vapor quality, saturation temperature, saturation pressure, wall temperature, heat flux and condensation heat transfer coefficient in flow direction
图13 冷凝传热系数实验值与经验公式计算值比较
Fig.13 Comparison between experimental values of condensation heat transfer coefficient and calculated values by empirical formula
1 | El Kadi K, Alnaimat F, Sherif S A. Recent advances in condensation heat transfer in mini and micro channels: a comprehensive review[J]. Applied Thermal Engineering, 2021, 197: 117412. |
2 | Tuckerman D B, Pease R F W. High-performance heat sinking for VLSI[J]. IEEE Electron Device Letters, 1981, 2(5): 126-129. |
3 | 葛洋, 姜未汀. 微通道换热器的研究及应用现状[J]. 化工进展, 2016, 35(S1): 10-15. |
Ge Y, Jiang W T. The research progress and application of the micro-channel heat exchanger[J]. Chemical Industry and Engineering Progress, 2016, 35(S1): 10-15. | |
4 | 高龙, 马富芹, 范晓伟, 等. 微/小通道内沸腾换热研究综述[J]. 节能技术, 2004, 22(6): 5-8. |
Gao L, Ma F Q, Fan X W, et al. Review of boiling heat transfer in micro-/mini-channel[J]. Energy Conservation Technology, 2004, 22(6): 5-8. | |
5 | 吕迪. 微小通道换热器的换热与流动特性数值研究[D]. 杭州: 浙江大学, 2020. |
Lyu D. Numerical investigations on heat transfer and flow characteristics of minichannel heat exchanger[D]. Hangzhou: Zhejiang University, 2020. | |
6 | Wang L L, Dang C B, Hihara E. Experimental study on condensation heat transfer and pressure drop of low GWP refrigerant HFO1234yf in a horizontal tube[J]. International Journal of Refrigeration, 2012, 35(5): 1418-1429. |
7 | Derby M, Lee H J, Peles Y, et al. Condensation heat transfer in square, triangular, and semi-circular mini-channels[J]. International Journal of Heat and Mass Transfer, 2012, 55(1/2/3): 187-197. |
8 | 雷雨川. 微通道内流体冷凝及传热强化研究[D]. 南京: 东南大学, 2021. |
Lei Y C. The research on fluid condensation and heat transfer enhancement in microchannels[D]. Nanjing: Southeast University, 2021. | |
9 | Tullius J F, Tullius T K, Bayazitoglu Y. Optimization of short micro pin fins in minichannels[J]. International Journal of Heat and Mass Transfer, 2012, 55(15/16): 3921-3932. |
10 | Mohammadi A, Koşar A. Review on heat and fluid flow in micro pin fin heat sinks under single-phase and two-phase flow conditions[J]. Nanoscale and Microscale Thermophysical Engineering, 2018, 22(3): 153-197. |
11 | Kim M H, Shin J S. Condensation heat transfer of R22 and R410A in horizontal smooth and microfin tubes[J]. International Journal of Refrigeration, 2005, 28(6): 949-957. |
12 | Sapali S N, Patil P A. Heat transfer during condensation of HFC-134a and R-404A inside of a horizontal smooth and micro-fin tube[J]. Experimental Thermal and Fluid Science, 2010, 34(8): 1133-1141. |
13 | Rahman M M, Kariya K, Miyara A. An experimental study and development of new correlation for condensation heat transfer coefficient of refrigerant inside a multiport minichannel with and without fins[J]. International Journal of Heat and Mass Transfer, 2018, 116: 50-60. |
14 | Lee E J, Kim N H, Byun H W. Condensation heat transfer and pressure drop in flattened microfin tubes having different aspect ratios[J]. International Journal of Refrigeration, 2014, 38: 236-249. |
15 | Wang P, Chen L. Thermal and hydraulic performance of micro pin fin heat sinks with different pin fin shapes[J]. IOP Conference Series: Materials Science and Engineering, 2019, 542(1): 012053. |
16 | Deng D X, Zeng L, Sun W, et al. Experimental study of flow boiling performance of open-ring pin fin microchannels[J]. International Journal of Heat and Mass Transfer, 2021, 167: 120829. |
17 | Zhang L G, Xu B, Shi J, et al. Experimental study on condensation heat transfer of FC-72 in a narrow rectangular channel with ellipse-shape pin fins: ground and microgravity experiments[J]. International Journal of Heat and Mass Transfer, 2019, 141: 1272-1287. |
18 | 詹宏波. 微小通道内两相换热特性实验研究[D]. 南京: 南京航空航天大学, 2016. |
Zhan H B. Experimental investigation on two-phase heat transfer in micro-channels[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016. | |
19 | Falsetti C, Jafarpoorchekab H, Magnini M, et al. Two-phase operational maps, pressure drop, and heat transfer for flow boiling of R236fa in a micro-pin fin evaporator[J]. International Journal of Heat and Mass Transfer, 2017, 107: 805-819. |
20 | Szczukiewicz S, Magnini M, Thome J R. Proposed models, ongoing experiments, and latest numerical simulations of microchannel two-phase flow boiling[J]. International Journal of Multiphase Flow, 2014, 59: 84-101. |
21 | Florschuetz L W, Truman C R, Metzger D E. Streamwise flow and heat transfer distributions for jet array impingement with crossflow[J]. Journal of Heat Transfer, 1981, 103(2): 337-342. |
22 | 詹宏波, 郑文远, 文涛, 等. 微尺度通道内R134a的冷凝传热实验研究[J]. 化工学报, 2020, 71(S1): 83-89. |
Zhan H B, Zheng W Y, Wen T, et al. Experimental investigation on condensation heat transfer of refrigerant R134a in micro-scale channel[J]. CIESC Journal, 2020, 71(S1): 83-89. | |
23 | Kline S J, Mcclintock F A. Describing uncertainties in single-sample experiments[J]. Mechanical Engineering, 1953, 75(1): 3-8. |
24 | Goss G Jr, Passos J C. Heat transfer during the condensation of R134a inside eight parallel microchannels[J]. International Journal of Heat and Mass Transfer, 2013, 59: 9-19. |
25 | Bohdal T, Charun H, Sikora M. Comparative investigations of the condensation of R134a and R404A refrigerants in pipe minichannels[J]. International Journal of Heat and Mass Transfer, 2011, 54(9/10): 1963-1974. |
26 | Sakamatapan K, Kaew-On J, Dalkilic A S, et al. Condensation heat transfer characteristics of R-134a flowing inside the multiport minichannels[J]. International Journal of Heat and Mass Transfer, 2013, 64: 976-985. |
27 | Wen T, Zhan H B, Zhang D L. Flow condensation in a mini channel with serrated fins with jet impingement cooling: experimental study and development of new correlation[J]. International Journal of Heat and Mass Transfer, 2018, 127: 1025-1040. |
28 | Azzolin M, Berto A, Bortolin S, et al. Condensation heat transfer in minichannels: a review of available correlations[J]. Journal of Physics: Conference Series, 2019, 1224(1): 012038. |
29 | Rifert V, Sereda V, Gorin V, et al. Heat transfer during film condensation inside plain tubes. Review of experimental research[J]. Heat and Mass Transfer, 2020, 56(3): 691-713. |
30 | 陈永平, 肖春梅, 施明恒, 等. 微通道冷凝研究的进展与展望[J]. 化工学报, 2007, 58(9): 2153-2160. |
Chen Y P, Xiao C M, Shi M H, et al. Review of condensation in microchannels[J]. Journal of Chemical Industry and Engineering (China), 2007, 58(9): 2153-2160. | |
31 | Lee J, Mudawar I. Two-phase flow in high-heat-flux micro-channel heat sink for refrigeration cooling applications(part I): Pressure drop characteristics[J]. International Journal of Heat and Mass Transfer, 2005, 48(5): 928-940. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[3] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[4] | 周绍华, 詹飞龙, 丁国良, 张浩, 邵艳坡, 刘艳涛, 郜哲明. 短管节流阀内流动噪声的实验研究及降噪措施[J]. 化工学报, 2023, 74(S1): 113-121. |
[5] | 苏伟, 马东旭, 金旭, 刘忠彦, 张小松. 表面润湿性对霜层传递特性影响可视化实验研究[J]. 化工学报, 2023, 74(S1): 122-131. |
[6] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[7] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[8] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[9] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[10] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[11] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[12] | 邹启宏, 李乾, 葛天舒. 基于多目标下的两级并联除湿热泵系统实验研究[J]. 化工学报, 2023, 74(S1): 265-271. |
[13] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[14] | 袁佳琦, 刘政, 黄锐, 张乐福, 贺登辉. 泡状入流条件下旋流泵能量转换特性研究[J]. 化工学报, 2023, 74(9): 3807-3820. |
[15] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||