化工学报 ›› 2022, Vol. 73 ›› Issue (3): 1147-1156.doi: 10.11949/0438-1157.20211620

• 流体力学与传递现象 • 上一篇    下一篇

基于最优传质系数的槽型结构参数对液膜机械密封汽化特性影响及优化

许晓东(),马晨波(),孙见君,张玉言,於秋萍   

  1. 南京林业大学机械电子工程学院,江苏 南京 210037
  • 收稿日期:2021-11-11 修回日期:2021-12-18 出版日期:2022-03-15 发布日期:2022-03-14
  • 通讯作者: 马晨波 E-mail:759063234@qq.com;mahaibo62@163.com
  • 作者简介:许晓东(1996—),男,硕士研究生,759063234@qq.com
  • 基金资助:
    国家重点研发计划项目(20l8YFB2000800);国家自然科学基金项目(52075268);江苏省重点研发计划项目(BE2021062)

Influence and optimization of groove structure parameters on vaporization characteristics of liquid film mechanical seals based on optimal mass transfer coefficient

Xiaodong XU(),Chenbo MA(),Jianjun SUN,Yuyan ZHANG,Qiuping YU   

  1. College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu,China
  • Received:2021-11-11 Revised:2021-12-18 Published:2022-03-15 Online:2022-03-14
  • Contact: Chenbo MA E-mail:759063234@qq.com;mahaibo62@163.com

摘要:

在获取Lee相变传质方程中最优传质系数的基础上,研究了螺旋角、槽径比、槽堰比以及槽深等槽型结构参数对液膜机械密封汽化特性(平均汽相体积分数表征)的影响规律,并基于均匀试验设计方法和响应面法探明了槽型结构参数之间的交互作用。最后以槽型结构参数为设计变量,以平均汽相体积分数为优化目标,采用遗传算法获得了结构参数的最优解范围。研究表明:平均汽相体积分数随着螺旋角、槽堰比、槽深的增大而增大,随着槽径比的增大先增加再减小;槽堰比和槽深交互影响极其显著,螺旋角和槽深交互影响较为显著;螺旋角、槽径比、槽堰比以及槽深分别在25.0°~28.0°、0.10~0.30、0.10~0.25和4.0~6.0 μm时,可以获得较优的平均汽相体积分数值。

关键词: 汽化, 传质系数, 结构参数, 平均汽相体积分数, 交互作用

Abstract:

On the basis of obtaining the optimal mass transfer coefficient in the Lee phase change mass transfer equation, the influence of the groove structure parameters such as helix angle, groove diameter ratio, groove weir ratio and groove depth on the vaporization characteristics of liquid film mechanical seals (characterization of average vapor phase volume fraction) is studied. And based on the uniform experimental design method and the response surface method, the interaction between the groove structure parameters is proved. Finally, the trough structural parameters are used as design variables, the average vapor phase volume fraction is used as the optimization objective, and the constraints are commonly used and empirically selected, and the genetic algorithm is used to obtain the optimal solution range of the structural parameters. Research shows that the average vapor phase volume fraction increases with the increase of helix angle, slot-weir ratio, and slot depth, and first increases and then decreases with the increase of slot-diameter ratio. The interaction between slot-weir ratio and groove depth is extremely significant, and the interaction between helix angle and groove depth is more significant. When the helix angle, groove diameter ratio, groove weir ratio and groove depth are 25.0°—28.0°, 0.10—0.30, 0.10—0.25 and 4.0—6.0 μm, better average vapor phase volume fraction values can be obtained.

Key words: vaporization, mass transfer coefficient, structural parameters, average vapor phase volume fraction, interaction

中图分类号: 

  • TH 117
1 王涛, 黄伟峰, 王玉明. 机械密封液膜汽化问题研究现状与进展[J]. 化工学报, 2012, 63(11): 3375-3382.
Wang T, Huang W F, Wang Y M. Research and progress of mechanical seals operating with vaporization transition[J]. CIESC Journal, 2012, 63(11): 3375-3382.
2 杨笑, 孟祥铠, 彭旭东, 等. 表面织构化机械密封热弹流润滑性能分析[J]. 摩擦学学报, 2018, 38(2): 204-212.
Yang X, Meng X K, Peng X D, et al. A TEHD lubrication analysis of surface textured mechanical seals[J]. Tribology, 2018, 38(2): 204-212.
3 李凤成, 王永乐, 刘杰, 等. 机械密封运行过程中失效机理的分析研究[J]. 液压气动与密封, 2019, 39(1): 46-49.
Li F C, Wang Y L, Liu J, et al. Analysis and study on failure mechanism of mechanical seals in running[J]. Hydraulics Pneumatics & Seals, 2019, 39(1): 46-49.
4 Zhang X M, Shi J, Wang S P, et al. Leakage model and failure factors analysis of mechanical seals[C]//2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA). Hefei, China: IEEE, 2016: 1359-1364.
5 Hughes W F, Chao N H. Phase change in liquid face seals (Ⅱ):Isothermal and adiabatic bounds with real fluids[J]. Journal of Lubrication Technology, 1980, 102(3): 350-357
6 陈汇龙, 吴强波, 左木子, 等. 机械密封端面液膜空化的研究进展[J]. 排灌机械工程学报, 2015, 33(2): 138-144.
Chen H L, Wu Q B, Zuo M Z, et al. Overview on liquid film cavitaion in mechanical seal faces[J]. Journal of Drainage and Irrigation Machinery Engineering, 2015, 33(2): 138-144.
7 宋武超, 王聪, 魏英杰, 等. 水下航行体俯仰运动微气泡减阻特性试验研究[J]. 兵工学报, 2019, 40(9): 1902-1910.
Song W C, Wang C, Wei Y J, et al. Experimental research on drag reduction characteristics of underwater vehicle during pitching[J]. Acta Armamentarii, 2019, 40(9): 1902-1910.
8 彭旭东, 金杰, 孟祥铠, 等. 汽液两相流机械密封的研究进展[J]. 摩擦学学报, 2019, 39(5): 643-655.
Peng X D, Jin J, Meng X K, et al. Research progress on the liquid face seal of vapor-liquid two-phase flow[J]. Tribology, 2019, 39(5): 643-655.
9 Hughes W F, Winowich N S, Birchak M J, et al. Phase change in liquid face seals[J]. Journal of Lubrication Technology, 1978, 100(1): 74-79.
10 Gu Y Q. Identifying of phase state and analysis of phase stability of mechanical seals in process pumps[C]. Proceeding of 12th ICFS BHRA.Brighton, UK, 1989: 89-107.
11 顾永泉. 机械密封的汽相体积比与膜压系数[J]. 石油大学学报(自然科学版), 1994, 18(2): 52-58.
Gu Y Q. Vapor phase volume praction and fluid film pressure coefficient of mechanical face seals[J]. Journal of the University of Petroleum, China: Natural Science,1994, 18(2): 52-58.
12 顾永泉. 机械密封的相态判断及相态稳定性分析[J]. 华东石油学院学报(自然科学版), 1986, 10(4): 29-42.
Gu Y Q. Identification of phase state and analysis of phase stability of mechanical face seals (mfs)[J]. Journal of the University of Petroleum: Natural Science, 1986, 10(4): 29-42.
13 甘延标. 多相流系统的格子玻尔兹曼方法与模拟研究[D]. 北京: 中国矿业大学(北京), 2012.
Gan Y B. Modeling and simulating of multiphase flows via lattice Boltzmann method[D]. Beijing: China University of Mining & Technology, Beijing, 2012.
14 Safari H, Rahimian M H, Krafczyk M. Consistent simulation of droplet evaporation based on the phase-field multiphase lattice Boltzmann method[J]. Physical Review E, 2014, 90(3): 033305.
15 吕知盛. 基于格子玻尔兹曼方法的多相流动与传热数值模拟研究[D]. 合肥: 中国科学技术大学, 2020.
Lv Z S. Numerical study of multi-phase flow and heat transfer based on lattice Boltzmann method[D]. Hefei: University of Science and Technology of China, 2020.
16 陈汇龙, 王彬, 任坤腾, 等. 空化热效应对上游泵送机械密封润滑性能的影响[J]. 化工学报, 2016, 67(10): 4334-4343.
Chen H L, Wang B, Ren K T, et al. Influence of cavitation thermal effect on lubrication properties of upstream pumping mechanical seal[J]. CIESC Journal, 2016, 67(10): 4334-4343.
17 陈汇龙, 韩婷, 李新稳, 等. 密封液膜汽化及性能的内摩擦效应和黏温效应分析[J]. 江苏大学学报(自然科学版), 2020, 41(6): 661-669.
Chen H L, Han T, Li X W, et al. Analysis of internal friction and viscosity-temperature effect on vaporization and properties of sealing liquid film[J]. Journal of Jiangsu University (Natural Science Edition), 2020, 41(6): 661-669.
18 陈汇龙, 桂铠, 李新稳, 等. 工况参数对机械密封液膜汽化特性及性能的影响[J]. 中国机械工程, 2021, 32(1): 2-11.
Chen H L, Gui K, Li X W, et al. Influences of operating parameters on vaporization characteristics and properties of liquid films for mechanical seals[J]. China Mechanical Engineering, 2021, 32(1): 2-11.
19 曹恒超, 郝木明, 李振涛, 等. 相变对螺旋槽液膜密封性能的影响[J]. 化工学报, 2017, 68(8): 3190-3201.
Cao H C, Hao M M, Li Z T, et al. Effect of phase change on performance of spiral groove liquid film seals[J]. CIESC Journal, 2017, 68(8): 3190-3201.
20 曹恒超, 郝木明, 李振涛, 等. 基于相变效应的内压型螺旋槽液膜密封性能分析[J]. 化工学报, 2017, 68(9): 3532-3540.
Cao H C, Hao M M, Li Z T, et al. Performance analysis of internal pressure type spiral groove liquid film seals based on phase change[J]. CIESC Journal, 2017, 68(9): 3532-3540.
21 曹恒超, 郝木明, 杨文静, 等. 双列螺旋槽液膜密封相变现象及性能[J]. 化工学报, 2018, 69(5):2110-2119.
Cao H C, Hao M M, Yang W J, et al. Phase change phenomenon and properties of double spiral groove liquid film seals[J]. CIESC Journal, 2018, 69(5): 2110-2119.
22 Wang X Y, Shi L P, Huang W, et al. A multi-objective optimization approach on spiral grooves for gas mechanical seals[J]. Journal of Tribology, 2018, 140(4): 041701.
23 Wang X Y, Shi L P, Huang W, et al. Closure to discussion of “A multi-objective optimization approach on spiral grooves for gas mechanical seals” (Wang X, Shi L, Huang W,et al. ASME J. Tribol. ,2018, 140(4): 041701)[J]. Journal of Tribology, 2019, 141(2): 026001.
24 陈银, 朱维兵, 王和顺, 等. 基于Fluent的上游泵送机械密封性能正交试验研究[J]. 润滑与密封, 2020, 45(4): 62-68.
Chen Y, Zhu W B, Wang H S, et al. Orthogonal experimental study on sealing performance of upstream pumping mechanical seal[J]. Lubrication Engineering, 2020, 45(4): 62-68.
25 冯瑞鹏. 高速深冷介质双螺旋动压密封性能研究及优化分析[D]. 北京: 北京化工大学, 2020.
Feng R P. Research and optimization analysis of double-row spiral dynamic pressure seal in high-speed cryogenic medium[D]. Beijing: Beijing University of Chemical Technology, 2020.
26 张国渊, 陈国忠, 赵伟刚, 等. 高速低温动静结合型机械密封结构优化及运转试验[J]. 航空动力学报, 2018, 33(5): 1093-1102.
Zhang G Y, Chen G Z, Zhao W G, et al. Optimization and test of parameters of the cryogenic hydrodynamic mechanical seal[J]. Journal of Aerospace Power, 2018, 33(5): 1093-1102.
27 马润梅, 冯瑞鹏, 李双喜, 等. 螺旋槽动压密封液膜汽化相变性能优化分析[J]. 机电工程, 2020, 37(9): 999-1005.
Ma R M, Feng R P, Li S X, et al. Optimum analysis of vaporization and phase change performance of spiral groove hydrodynamic seal liquid film[J]. Journal of Mechanical & Electrical Engineering, 2020, 37(9): 999-1005.
28 陈汇龙, 刘金凤, 任坤腾,等. 基于响应面法的上游泵送机械密封优化[J]. 排灌机械工程学报, 2016, 34(3): 232-237.
Chen H L, Liu J F, Ren K T, et al. Optimization of upstream pumping mechanical seal based on response surface method[J]. Journal of Drainage and Irrigation Machinery Engineering, 2016, 34(3): 232-237.
29 Lee W H. A pressure iteration scheme for two-phase flow modeling[J]. Multiphase Transport Fundamentals. Reactor Safety, Applications, 1980, 1: 407-431.
30 da Riva E, del Col D. Numerical simulation of laminar liquid film condensation in a horizontal circular minichannel[J]. Journal of Heat Transfer, 2012, 134(5): 051019.
31 邱国栋, 蔡伟华, 吴志勇, 等. Lee相变传质方程中传质系数取值的分析[J]. 哈尔滨工业大学学报, 2014, 46(12): 15-19.
Qiu G D, Cai W H, Wu Z Y, et al. Analysis on the value of coefficient of mass transfer with phase change in Lee’s equation[J]. Journal of Harbin Institute of Technology, 2014, 46(12): 15-19.
32 黄伟峰, 潘晓波, 王子羲, 等. 上游泵送机械密封热-流固耦合建模与性能分析[J]. 清华大学学报(自然科学版), 2020, 60(7): 603-610.
Huang W F, Pan X B, Wang Z X, et al. Thermal-fluid-solid coupled analyses of upstream mechanical seals in pumps[J]. Journal of Tsinghua University (Science and Technology), 2020, 60(7): 603-610.
33 ANSYS Inc. ANSYS14. 0 FLUENT theory guid[Z]. Canonsburg: ANSYS Inc., 2011.
34 Wallis G B. One-dimensional two-phase flows[M]. New York: McGraw-Hill Companies, 1969.
35 李新稳. 动压型机械密封液膜汽化特性及性能研究[D]. 镇江: 江苏大学, 2019.
Li X W. Research on vaporization characteristics of fluid film and performance in hydrodynamic mechanical seals[D]. Zhenjiang: Jiangsu University, 2019.
36 胡坤, 李振北. ANSYS ICEM CFD 工程实例详解[M]. 北京: 人民邮电出版社, 2014.
Hu K, Li Z B. ANSYS ICEM CFD Engineering Examples in Detail[M]. Beijing: Posts & Telecom Press, 2014.
37 杜双奎. 试验优化设计与统计分析[M]. 2版. 北京: 科学出版社, 2020.
Du S K. Experimental Design and Statistical Analysis[M]. Beijing: Science Press, 2020.
38 徐奇超, 江锦波, 彭旭东, 等. 基于遗传算法的干气密封双向槽统一模型与参数优化[J]. 化工学报, 2019, 70(3): 995-1005, 782.
Xu Q C, Jiang J B, Peng X D, et al. Unified model and geometrical optimization of bi-directional groove of dry gas seal based on genetic algorithm[J]. CIESC Journal, 2019, 70(3): 995-1005, 782.
39 顾永泉. 机械密封实用技术[M]. 北京: 机械工业出版社, 2001.
Gu Y Q. Practical Technology of Mechanical Seal[M]. Beijing: China Machine Press, 2001.
[1] 陈昇, 王梦钶, 鲁波娜, 李秀峰, 刘岑凡, 刘梦溪, 范怡平, 卢春喜. 原料油汽化特性对催化裂化反应结焦过程影响的CFD模拟[J]. 化工学报, 2022, 73(7): 2982-2995.
[2] 刘鑫, 潘阳, 刘公平, 方静, 李春利, 李浩. 渗透汽化-隔壁塔精馏耦合初步分离费托合成水的过程研究[J]. 化工学报, 2022, 73(5): 2020-2030.
[3] 马荣, 孙杰, 李东辉, 魏进家. 基于Cu/TiO2/C-Wood复合材料的聚光太阳能驱动自漂浮高效海水汽化催化分解制氢体系[J]. 化工学报, 2022, 73(4): 1695-1703.
[4] 毛恒, 王月, 王森, 刘伟民, 吕静, 陈甫雪, 赵之平. APTES改性ZIF-L/PEBA混合基质膜强化渗透汽化分离苯酚研究[J]. 化工学报, 2022, 73(3): 1389-1402.
[5] 林恩承, 王文, 匡以武, 石玉美, 耑锐, 孙礼杰. 低温输运管道预冷过程的气液两相数值分析[J]. 化工学报, 2021, 72(S1): 153-160.
[6] 赵兰萍, 郭本涛, 杨志刚. 车用热泵内部冷凝器结构对性能的影响[J]. 化工学报, 2021, 72(9): 4616-4628.
[7] 丁婉月, 马晓华. 合成次数及硅铝比调控SAPO-34分子筛膜的乙醇脱水性能[J]. 化工学报, 2021, 72(8): 4410-4417.
[8] 方丽君, 王景梅, 林巧靖, 陈建华, 杨谦. 二苯并-18-冠醚-6/聚醚嵌段酰胺膜富集水中苯酚性能研究[J]. 化工学报, 2021, 72(7): 3716-3727.
[9] 王冠球, 林冠屹, 朱春英, 付涛涛, 马友光. 微通道反应器的一维放大及气液传质特性[J]. 化工学报, 2021, 72(2): 937-944.
[10] 郭达, 祁贵生, 刘有智, 焦纬洲, 闫文超, 高雨松. 错流旋转填料床的质、热同传性能及传热机理研究[J]. 化工学报, 2021, 72(11): 5543-5551.
[11] 左成业, 涂睿, 丁晓斌, 邢卫红. PDMS复合膜回收酯化反应废水中的异丁醇[J]. 化工学报, 2020, 71(9): 4189-4199.
[12] 马珊宏, 叶枫, 王燕鸿, 郎雪梅, 樊栓狮, 李刚. ZSM-5沸石膜用于生物油的脱水分离及其再生过程研究[J]. 化工学报, 2020, 71(7): 3345-3353.
[13] 刘作华, 孙伟, 熊黠, 陶长元, 王运东, 程芳琴. 脉冲射流-刚柔组合桨强化流体混沌混合及传质性能研究[J]. 化工学报, 2020, 71(10): 4632-4641.
[14] 宋思婕,姚加,李浩然. 离子液体汽化焓的测量方法[J]. 化工学报, 2020, 71(1): 26-33.
[15] 王海琴, 范明龙, 张足斌. CO2-C2H6共沸物分离的立方型状态方程选取[J]. 化工学报, 2019, 70(9): 3228-3237.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!