化工学报 ›› 2022, Vol. 73 ›› Issue (12): 5427-5437.DOI: 10.11949/0438-1157.20221301
收稿日期:
2022-09-27
修回日期:
2022-11-06
出版日期:
2022-12-05
发布日期:
2023-01-17
通讯作者:
杨霄
作者简介:
杨霄(1993—),男,博士,准聘副教授,yangxiao@cumt.edu.cn
基金资助:
Xiao YANG(), Rui DING, Mohan LI, Zhengchang SONG
Received:
2022-09-27
Revised:
2022-11-06
Online:
2022-12-05
Published:
2023-01-17
Contact:
Xiao YANG
摘要:
基于详细的甲烷均相与非均相反应机理,对平板微通道内甲烷催化燃烧反应过程模拟,探究入口氧浓度变化对耦合反应特性的影响与调控机制。结果表明,氧浓度升高导致甲烷均相与非均相反应放热位置向入口侧移动,缩短均相着火距离,拓宽稳燃范围。固定入口甲烷浓度,氧浓度升高导致化学当量比降低,同时也改变了均相/非均相反应对反应物O2的竞争机制;氧浓度与化学当量比共同作用改变了气相自由基的吸附与脱附行为。增加O2浓度促进CH4和H自由基的均相反应消耗同时抑制CH4和H的非均相反应速率。随着O2浓度的升高,O2以及中间产物CO和H2参与非均相反应速率先升高后降低。
中图分类号:
杨霄, 丁锐, 李墨含, 宋正昶. 氧浓度对微通道内甲烷均相/非均相耦合反应特性的影响[J]. 化工学报, 2022, 73(12): 5427-5437.
Xiao YANG, Rui DING, Mohan LI, Zhengchang SONG. Effect of oxygen concentration on homogeneous/heterogeneous coupled reaction characteristics of methane in microchannel[J]. CIESC Journal, 2022, 73(12): 5427-5437.
工况 | 氧化剂 | 入口甲烷燃料 体积分数/% | 化学 当量比 | |
---|---|---|---|---|
O2/% | N2/% | |||
1 | 19 | 81 | 9.5023 | 1.105 |
2 | 20 | 80 | 9.5023 | 1.050 |
3 | 21 | 79 | 9.5023 | 1.000 |
4 | 22 | 78 | 9.5023 | 0.955 |
5 | 23 | 77 | 9.5023 | 0.913 |
表1 入口工况
Table 1 Inlet flow conditions
工况 | 氧化剂 | 入口甲烷燃料 体积分数/% | 化学 当量比 | |
---|---|---|---|---|
O2/% | N2/% | |||
1 | 19 | 81 | 9.5023 | 1.105 |
2 | 20 | 80 | 9.5023 | 1.050 |
3 | 21 | 79 | 9.5023 | 1.000 |
4 | 22 | 78 | 9.5023 | 0.955 |
5 | 23 | 77 | 9.5023 | 0.913 |
图5 燃烧器催化表面非均相反应放热速率与中心线上均相反应放热速率分布
Fig.5 Distribution of heat release rate of heterogeneous reaction on the catalytic surface and homogeneous reaction along the centerline
1 | Kaisare N S, Vlachos D G. A review on microcombustion: fundamentals, devices and applications[J]. Progress in Energy and Combustion Science, 2012, 38(3): 321-359. |
2 | Qian P, Liu M H. Influencing factors of wall temperature and flame stability of micro-combustors in micro-thermophotovoltaic and micro-thermoelectric systems[J]. Fuel, 2022, 310: 122436. |
3 | E J Q, Ding J J, Chen J W, et al. Process in micro-combustion and energy conversion of micro power system: a review[J]. Energy Conversion and Management, 2021, 246: 114664. |
4 | Chen N G, Gan Y H, Luo Y L, et al. A review on the technology development and fundamental research of electrospray combustion of liquid fuel at small-scale[J]. Fuel Processing Technology, 2022, 234: 107342. |
5 | Fan Y, Guo J Q, Lee M, et al. Quantitative evaluation of wall chemical effect in hydrogen flame using two-photon absorption LIF[J]. Proceedings of the Combustion Institute, 2021, 38(2): 2361-2370. |
6 | Maruta K, Kataoka T, Kim N I, et al. Characteristics of combustion in a narrow channel with a temperature gradient[J]. Proceedings of the Combustion Institute, 2005, 30(2): 2429-2436. |
7 | Wang S X, Fan A W. Numerical investigation of CH4/H2/air flame bifurcations in a micro flow reactor with controlled wall temperature profile[J]. Combustion and Flame, 2022, 241: 112070. |
8 | Kim N I, Kato S, Kataoka T, et al. Flame stabilization and emission of small Swiss-roll combustors as heaters[J]. Combustion and Flame, 2005, 141(3): 229-240. |
9 | Kim N I, Aizumi S, Yokomori T, et al. Development and scale effects of small Swiss-roll combustors[J]. Proceedings of the Combustion Institute, 2007, 31(2): 3243-3250. |
10 | Tang A K, Cai T, Deng J, et al. Experimental investigation on combustion characteristics of premixed propane/air in a micro-planar heat recirculation combustor[J]. Energy Conversion and Management, 2017, 152: 65-71. |
11 | Wan J L, Su Z Y. Ultra-lean dynamics of a holder-stabilized hydrogen enriched flames in a preheated mesoscale combustor[J]. Physics of Fluids, 2022, 34(5): 057108. |
12 | Wan J L, Fan A W, Yao H. Effect of the length of a plate flame holder on flame blowout limit in a micro-combustor with preheating channels[J]. Combustion and Flame, 2016, 170: 53-62. |
13 | Li Q Q, Li J, Shi J R, et al. Effects of heat transfer on flame stability limits in a planar micro-combustor partially filled with porous medium[J]. Proceedings of the Combustion Institute, 2019, 37(4): 5645-5654. |
14 | Li J, Xiao H C, Li Q Q, et al. Heat recirculation and heat losses in porous micro-combustors: effects of wall and porous media properties and combustor dimensions[J]. Energy, 2021, 220: 119772. |
15 | Li L H, Yang W, Fan A W. Effect of the cavity aft ramp angle on combustion efficiency of lean hydrogen/air flames in a micro cavity-combustor[J]. International Journal of Hydrogen Energy, 2019, 44(11): 5623-5632. |
16 | Yan Y F, Liu Y, Li L X, et al. Numerical comparison of H2/air catalytic combustion characteristic of micro-combustors with a conventional, slotted or controllable slotted bluff body[J]. Energy, 2019, 189: 116242. |
17 | Yang X, Yang W M, Dong S K, et al. Flame stability analysis of premixed hydrogen/air mixtures in a swirl micro-combustor[J]. Energy, 2020, 209: 118495. |
18 | Wan J L, Fan A W. Recent progress in flame stabilization technologies for combustion-based micro energy and power systems[J]. Fuel, 2021, 286: 119391. |
19 | 徐露, 周俊虎, 张兴, 等. 贫氧条件下正癸烷在Pt/ZSM-5上的催化燃烧特性[J]. 化工进展, 2022, 41(1): 146-152. |
Xu L, Zhou J H, Zhang X, et al. Catalytic combustion characteristics of n-decane on Pt/ZSM-5 under oxygen deficient conditions[J]. Chemical Industry and Engineering Progress, 2022, 41(1): 146-152. | |
20 | 李凡, 姜奥林, 杨浩林, 等. 氧化锆基涂层壁面改善火焰稳定性研究[J]. 化工学报, 2021, 72(11): 5883-5892. |
Li F, Jiang A L, Yang H L, et al. Study on enhancing flame stability using zirconia-based coating walls[J]. CIESC Journal, 2021, 72(11): 5883-5892. | |
21 | Yedala N, Raghu A K, Kaisare N S. A 3D CFD study of homogeneous-catalytic combustion of hydrogen in a spiral microreactor[J]. Combustion and Flame, 2019, 206: 441-450. |
22 | Wang Y F, Yang W J, Zhou J H, et al. Heterogeneous reaction characteristics and their effects on homogeneous combustion of methane/air mixture in micro channels (Ⅰ): Thermal analysis[J]. Fuel, 2018, 234: 20-29. |
23 | Mantzaras J, Sui R, Law C K, et al. Heterogeneous and homogeneous combustion of fuel-lean C3H8/O2/N2 mixtures over rhodium at pressures up to 6 bar[J]. Proceedings of the Combustion Institute, 2021, 38(4): 6473-6482. |
24 | Sui R, Mantzaras J, Bombach R, et al. Hetero-/homogeneous combustion of fuel-lean methane/oxygen/nitrogen mixtures over rhodium at pressures up to 12 bar[J]. Proceedings of the Combustion Institute, 2017, 36(3): 4321-4328. |
25 | Sui R, Mantzaras J, Bombach R. H2 and CO heterogeneous kinetic coupling during combustion of H2/CO/O2/N2 mixtures over rhodium[J]. Combustion and Flame, 2019, 202: 292-302. |
26 | 潘剑锋, 卢志刚, 卢青波, 等. 催化微燃烧室内氢气/空气预混合燃烧特性[J]. 燃烧科学与技术, 2018, 24(5): 383-390. |
Pan J F, Lu Z G, Lu Q B, et al. Characteristics of premixed combustion of hydrogen and air in catalytic micro-combustor[J]. Journal of Combustion Science and Technology, 2018, 24(5): 383-390. | |
27 | Pan J F, Miao N N, Lu Z G, et al. Experimental and numerical study on the transition conditions and influencing factors of hetero-/ homogeneous reaction for H2/air mixture in micro catalytic combustor[J]. Applied Thermal Engineering, 2019, 154: 120-130. |
28 | Wang Y F, Yang W J, Zhou J H, et al. Heterogeneous reaction characteristics and its effects on homogeneous combustion of methane/air mixture in microchannels (Ⅱ): Chemical analysis[J]. Fuel, 2019, 235: 923-932. |
29 | Warnatz J, Maas U, Dibble R W. Combustion, Physical and Chemical Fundamentals, Modeling and Simulation[M]. New York: Springer-Verlag, 1996. |
30 | Deutschmann O, Maier L I, Riedel U, et al. Hydrogen assisted catalytic combustion of methane on platinum[J]. Catalysis Today, 2000, 59(1/2): 141-150. |
31 | Karagiannidis S, Mantzaras J, Boulouchos K. Stability of hetero-/homogeneous combustion in propane- and methane-fueled catalytic microreactors: channel confinement and molecular transport effects[J]. Proceedings of the Combustion Institute, 2011, 33(2): 3241-3249. |
32 | Karagiannidis S, Mantzaras J. Numerical investigation on the start-up of methane-fueled catalytic microreactors[J]. Combustion and Flame, 2010, 157(7): 1400-1413. |
33 | Khan A R, Anbusaravanan S, Kalathi L, et al. Investigation of dilution effect with N2/CO2 on laminar burning velocity of premixed methane/oxygen mixtures using freely expanding spherical flames[J]. Fuel, 2017, 196: 225-232. |
[1] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[2] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[3] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[4] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[5] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[6] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[7] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[8] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[9] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[10] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[11] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[12] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[13] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[14] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[15] | 陈雅鑫, 袁航, 刘冠章, 毛磊, 杨纯, 张瑞芳, 张光亚. 蛋白质纳米笼介导的酶自固定化研究进展[J]. 化工学报, 2023, 74(7): 2773-2782. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||