化工学报 ›› 2019, Vol. 70 ›› Issue (S2): 208-214.DOI: 10.11949/0438-1157.20190552
收稿日期:
2019-05-22
修回日期:
2019-06-08
出版日期:
2019-09-06
发布日期:
2019-09-06
通讯作者:
王雅博
作者简介:
诸凯(1954—),男,博士,教授,基金资助:
Kai ZHU(),Yanqi XIE,Yabo WANG()
Received:
2019-05-22
Revised:
2019-06-08
Online:
2019-09-06
Published:
2019-09-06
Contact:
Yabo WANG
摘要:
细胞胞内冰的形成会导致严重的细胞损伤从而导致低温贮存中的诸多问题。以蚕豆为研究对象,用细胞松弛素B溶解细胞骨架,使用低温显微系统在不同的冷却速率下进行冷冻实验。实验结果表明,使用细胞松弛素B处理过的细胞在冷冻过程中结晶温度更高,结晶时间更短,但细胞骨架对胞内冰的生长过程影响较小。外界条件起着关键作用,接种冰晶影响细胞内冰晶的形成温度及冰晶的生长速率。最后,通过光强度图对细胞的损伤程度进行了分析。
中图分类号:
诸凯, 谢艳琦, 王雅博. 冷冻保存中影响胞内冰生长的因素[J]. 化工学报, 2019, 70(S2): 208-214.
Kai ZHU, Yanqi XIE, Yabo WANG. Factors affecting intracellular ice growth during cryopreservation[J]. CIESC Journal, 2019, 70(S2): 208-214.
1 | FonsecaS C, GilL, MansoM C, et al. Modelling the influence of storage temperature and time after cutting on respiration rate of diced red onions (Allium cepa L. cv. Vermelha da Póvoa)[J]. Postharvest Biology & Technology, 2018, 140(C): 27-33. |
2 | HoffmannN E, BischofJ C. The cryobiology of cryosurgical injury[J]. Urology, 2002, 60(2-supp-S1): 40-49. |
3 | PhothisetS , CharoenreinS . Effects of freezing and thawing on texture, microstructure and cell wall composition changes in papaya tissues[J]. Journal of the Science of Food and Agriculture, 2014, 94(2): 189-196. |
4 | FujikawaS. Freeze-fracture and etching studies on membrane damage on human erythrocytes caused by formation of intracellular ice[J]. Cryobiology, 1980, 17(4): 351-362. |
5 | AckerJ P, McgannL E. Membrane damage occurs during the formation of intracellular ice[J]. Cryo Letters, 2001, 22(4): 241-254. |
6 | BrownM S. Texture of frozen vegetables: effect of freezing rate on green beans[J]. J. Sci. Food Agr., 1967, 18(2): 77-81. |
7 | AlhamdanA, HassanB, AlkahtaniH, et al. Cryogenic freezing of fresh date fruits for quality preservation during frozen storage[J]. Journal of the Saudi Society of Agricultural Sciences, 2015: S1658077X15300783. |
8 | HoffmannN E, BischofJ C. The cryobiology of cryosurgical injury[J]. Urology, 2002, 60(2): 40-49. |
9 | LagerveldB W. Cryosurgical induced injury of human cancerous tissues – How it works?[J]. British Journal of Medical & Surgical Urology, 2012, 5(5): S24-S27. |
10 | NinagawaT, EguchiA, KawamuraY, et al. A study on ice crystal formation behavior at intracellular freezing of plant cells using a high-speed camera[J]. Cryobiology, 2016, 73(1): 20-29. |
11 | LevittJ. Responses of Plants to Environmental Stresses: Vol 1: Chilling, Freezing and High Temperature Stresses[M]. 2nd ed. New York: Academic Press, 1980. |
12 | BrownM S. Texture of frozen vegetables: effect of freezing rate on green beans[J]. Journal of the Science of Food & Agriculture, 2010, 18(2): 77-81. |
13 | BarbosacanovasG V, AltunakarB, MejialorioD. Freezing of fruits and vegetables. An agribusiness alternative for rural and semi-rural areas[J]. Fao Agricultural Services Bulletin, 2005, 36(9): 3911-3915. |
14 | MazurP. Physical factors implicated in the death of microorganisms at subzero temperatures[J]. Annals of the New York Academy of Sciences, 2010, 85(2): 610-629. |
15 | MazurP. Physical and chemical basis of injury in single-celled microorganisms subjected to freezing and thawing [J]. Annals of the New York Academy of Sciences, 1966, (1): 213-315. |
16 | FennemaO R , PowrieW D , MarthE H. Low-temperature Preservation of Foods and Living Matter[M]. New York: Marcel Dekker, 1973. |
17 | PetzoldG, AguileraJ M. Ice morphology: fundamentals and technological applications in foods[J]. Food Biophysics, 2009, 4(4): 378-396. |
18 | LozinskyV I, PlievaF M, GalaevI Y,et al. The potential of polymeric cryogels in bioseparation[J]. Bioseparation, 2001, 10(4/5): 163-188. |
19 | WareC B, NelsonA M, BlauC A. Controlled-rate freezing of human ES cells[J]. Biotechniques, 2005, 38(6): 879-880. |
20 | FrancoM, HansenP J. Effects of hyaluronic acid in culture and cytochalasin B treatment before freezing on survival of cryopreserved bovine embryos produced in vitro[J]. In Vitro Cellular and Developmental Biology. Animal, 2006, 42(1/2): 40-44. |
21 | HosuB G, MullenS F, CritserJ K, et al. Reversible disassembly of the actin cytoskeleton improves the survival rate and developmental competence of cryopreserved mouse oocytes[J]. PLoS ONE, 2008, 3(7): 2787-2793. |
22 | ShigehikoO, TomoyukiF, OsatoM. Electrical and rheological analysis of freezing injury of agricultural products[J]. International Journal of Food Properties, 2002, 5(2): 317-332. |
23 | OrvarB L, SangwanV, OmannF, et al. Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity[J]. Plant Journal, 2010, 23(6): 785-794. |
24 | TutejaN, GillS S. Abiotic stress response in plants: role of cytoskeleton[M]// Abiotic Stress Response in Plants. Wiley‐VCH Verlag GmbH & Co. KGaA, 2016: 835-847. |
25 | KasperJ C, FriessW. The freezing step in lyophilization: physico-chemical fundamentals, freezing methods and consequences on process performance and quality attributes of biopharmaceuticals[J]. European Journal of Pharmaceutics & Biopharmaceutics, 2011, 78(2): 248-263. |
26 | 张哲, 郝俊杰, 赵静, 等. 冷冻-复温过程中葡萄相变过程研究[J]. 农业机械学报, 2016, 47(9): 241-248. |
ZhangZ, HaoJ J, ZhaoJ, et al. Study on the phase transition of grape in the process of freezing and rewarming[J]. Journal of Agricultural Machinery, 2016, 47(9): 241-248. | |
27 | 杨戈尔, 张爱丽, 徐学敏, 等. 胞内冰晶形成(综述)[J]. 工程热物理学报, 2007, 28(z2): 55-57. |
YangG E, ZhangA L, XuX M, et al. Intracellular ice crystal formation (review)[J]. Journal of Engineering Thermophysics, 2007, 28(z2): 55-57. | |
28 | XuD, WangH, WangY, et al. Ice crystal growth of living onion epidermal cells as affected by freezing rates[J]. International Journal of Food Properties, 2018, 21(1): 606-617. |
29 | 龚明, 刘友良. 接种冰晶对测定植物组织抗冻性的影响[J]. 南京农业大学学报, 1989, 12(2): 117-118. |
GongM, LiuY L. Effect of inoculation of ice crystals on the determination of frost resistance of plant tissues[J]. Journal of Nanjing Agricultural University, 1989, 12(2): 117-118. | |
30 | GuoX S. Function of polyamine catabolism and its main catabolic products in higher plants[J]. Chinese Bulletin of Botany, 2005, 22(4): 408-418. |
31 | SchneiderC A, RasbandW S, EliceiriK W. NIH Image to ImageJ: 25 years of image analysis[J]. Nature Methods, 2012, 9(7): 671-675. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 周晓庆, 李春煜, 杨光, 蔡爱峰, 吴静怡. 液滴撞击不同曲率过冷波纹面结冰动力学行为及机理研究[J]. 化工学报, 2023, 74(S1): 141-153. |
[3] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[4] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[5] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[6] | 林典, 江国梅, 徐秀彬, 赵波, 刘冬梅, 吴旭. 硅基类液防原油黏附涂层的研制及其减阻性能研究[J]. 化工学报, 2023, 74(8): 3438-3445. |
[7] | 傅予, 刘兴翀, 王瀚雨, 李海敏, 倪亚飞, 邹文静, 雷月, 彭永姗. F3EACl修饰层对钙钛矿太阳能电池性能提升的研究[J]. 化工学报, 2023, 74(8): 3554-3563. |
[8] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
[9] | 张媛媛, 曲江源, 苏欣欣, 杨静, 张锴. 循环流化床燃煤机组SNCR脱硝过程气液传质和反应特性[J]. 化工学报, 2023, 74(6): 2404-2415. |
[10] | 李正涛, 袁志杰, 贺高红, 姜晓滨. 疏水界面上的NaCl液滴蒸发过程内环流调控机制研究[J]. 化工学报, 2023, 74(5): 1904-1913. |
[11] | 王皓, 唐思扬, 钟山, 梁斌. MEA吸收CO2富液解吸过程中固体颗粒表面的强化作用分析[J]. 化工学报, 2023, 74(4): 1539-1548. |
[12] | 尹驰, 张正国, 凌子夜, 方晓明. 含石蜡@二氧化硅纳米胶囊和碳纤维的相变热界面材料及其散热性能[J]. 化工学报, 2023, 74(4): 1795-1804. |
[13] | 贾露凡, 王艺颖, 董钰漫, 李沁园, 谢鑫, 苑昊, 孟涛. 微流控双水相贴壁液滴流动强化酶促反应研究[J]. 化工学报, 2023, 74(3): 1239-1246. |
[14] | 钱志广, 樊越, 王世学, 岳利可, 王金山, 朱禹. 吹扫条件对PEMFC阻抗弛豫现象和低温启动的影响[J]. 化工学报, 2023, 74(3): 1286-1293. |
[15] | 何洋, 高森虎, 吴青云, 张明理, 龙涛, 牛佩, 高景辉, 孟颖琪. 析湿工况下平直开缝翅片传热传质特性的数值研究[J]. 化工学报, 2023, 74(3): 1073-1081. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||