化工学报 ›› 2019, Vol. 70 ›› Issue (10): 3635-3644.DOI: 10.11949/0438-1157.20190710
收稿日期:
2019-06-24
修回日期:
2019-07-18
出版日期:
2019-10-05
发布日期:
2019-10-05
通讯作者:
陈光文
作者简介:
尧超群(1989—),男,博士,副研究员,基金资助:
Chaoqun YAO(),Guangwen CHEN(),Quan YUAN
Received:
2019-06-24
Revised:
2019-07-18
Online:
2019-10-05
Published:
2019-10-05
Contact:
Guangwen CHEN
摘要:
微通道内气-液两相体系中Taylor流和泡状流具有气泡尺寸均一、停留时间分布窄、可调控性强和比表面积高等优点,具有广泛的应用前景。从Taylor气泡和泡状气泡的传质过程出发,系统综述了微尺度下气泡的溶解规律、传质过程机理和传质/溶解模型等方面的研究进展,并介绍上述流型在反应或过程强化、基础物性及动力学数据测量和微纳材料合成方面的应用。最后总结并展望了技术领域的研究难点与研究方向。
中图分类号:
尧超群, 陈光文, 袁权. 微通道内气-液两相传质过程行为及其应用[J]. 化工学报, 2019, 70(10): 3635-3644.
Chaoqun YAO, Guangwen CHEN, Quan YUAN. Mass transfer characteristics of gas-liquid two-phase flow in microchannels and applications[J]. CIESC Journal, 2019, 70(10): 3635-3644.
文献 | 关联式 |
---|---|
[ | |
[ | |
[ | |
[ | |
[ | |
[ | |
[ | |
[ | |
[ |
表1 常用的气液传质关联式
Table 1 Typical correlations for gas-liquid mass transfer
文献 | 关联式 |
---|---|
[ | |
[ | |
[ | |
[ | |
[ | |
[ | |
[ | |
[ | |
[ |
1 | ZhaoY C, YaoC Q, ChenG W, et al. Highly efficient synthesis of cyclic carbonate with CO2 catalyzed by ionic liquid in a microreactor [J]. Green Chem., 2013, 15(2): 446-452. |
2 | HeZ, JamisonT F. Continuous-flow synthesis of functionalized phenols by aerobic oxidation of Grignard reagents [J]. Angewandte Chem., 2014, 126(13): 3421-3425. |
3 | YueJ, ChenG W, YuanQ, et al. Hydrodynamics and mass transfer characteristics in gas-liquid flow through a rectangular microchannel [J]. Chem. Eng. Sci., 2007, 62(7): 2096-2108. |
4 | CaoH S, ChenG W, YuanQ. Testing and design of a microchannel heat exchanger with multiple plates[J]. Ind. Eng. Chem. Res., 2009, 48(9): 4535-4541. |
5 | HesselV, KralischD, KockmannN, et al. Novel process windows for enabling, accelerating, and uplifting flow chemistry [J]. ChemSusChem, 2013, 6(5): 746-789. |
6 | YaoC Q, DongZ Y, ZhangY C, et al. On the leakage flow around gas bubbles in slug flow in a microchannel [J]. AIChE J., 2015, 61(11): 3964-3972. |
7 | AbolhasaniM, GüntherA, KumachevaE. Microfluidic studies of carbon dioxide [J]. Angewandte Chem., 2014, 126 (31): 8126-8136. |
8 | AbolhasaniM, SinghM, KumachevaE, et al. Automated microfluidic platform for studies of carbon dioxide dissolution and solubility in physical solvents [J]. Lab Chip, 2012, 12(9): 1611-1618. |
9 | ZhengC, ZhaoB, WangK, et al. Determination of kinetics of CO2 absorption in solutions of 2-amino-2-methyl-1-propanol using a microfluidic technique [J]. AIChE J., 2015, 61(12): 4358-4366. |
10 | SharbatianA, AbediniA, QiZ, et al. Full characterization of CO2-oil properties on-chip: solubility, diffusivity, extraction pressure, miscibility, and contact angle [J]. Anal. Chem., 2018, 90(4): 2461-2467. |
11 | 尧超群, 乐军, 赵玉潮, 等. 微通道内气-液弹状流动及传质特性研究进展 [J]. 化工学报, 2015, 66(8): 2759-2766. |
YaoC Q, YueJ, ZhaoY C, et al. Review on flow and mass transfer characteristics of gas-liquid slug flow in mieroehannels [J]. CIESC Journal, 2015, 66(8): 2759-2766. | |
12 | FuT, MaY. Bubble formation and breakup dynamics in microfluidic devices: a review [J]. Chem. Eng. Sci., 2015, 135: 343-372. |
13 | SunR, CubaudT. Dissolution of carbon dioxide bubbles and microfluidic multiphase flows [J]. Lab Chip, 2011, 11(17): 2924-2928. |
14 | YangL, Nieves-RemachaM J, JensenK F. Simulations and analysis of multiphase transport and reaction in segmented flow microreactors [J]. Chem. Eng. Sci., 2017, 169: 106-116. |
15 | AbolhasaniM, KumachevaE, GüntherA. Peclet number dependence of mass transfer in microscale segmented gas-liquid flow [J]. Ind. Eng. Chem. Res., 2015, 54(36): 9046-9051. |
16 | ButlerC, LalanneB, SandmannK, et al. Mass transfer in Taylor flow: transfer rate modelling from measurements at the slug and film scale [J]. Int. J. Multiphase Flow, 2018, 105: 185-201. |
17 | YaoC Q, DongZ Y, ZhaoY C, et al. An online method to measure mass transfer of slug flow in a microchannel [J]. Chem. Eng. Sci., 2014, 112: 15-24. |
18 | YaoC Q, DongZ Y, ZhaoY C, et al. Gas-liquid flow and mass transfer in a microchannel under elevated pressures [J]. Chem. Eng. Sci., 2015, 123: 137-145. |
19 | SauzadeM, CubaudT. Initial microfluidic dissolution regime of CO2 bubbles in viscous oils [J]. Phys. Review E, 2013, 88(5): 051001. |
20 | YaoC Q, LiuY Y, ZhaoS N, et al. Bubble/droplet formation and mass transfer during gas-liquid-liquid segmented flow with soluble gas in a microchannel [J]. AIChE J., 2017, 63(5): 1727-1739. |
21 | DietrichN, LoubièreK, JimenezM, et al. A new direct technique for visualizing and measuring gas-liquid mass transfer around bubbles moving in a straight millimetric square channel [J]. Chem. Eng. Sci., 2013, 100: 172-182. |
22 | KececiS, WörnerM, OneaA, et al. Recirculation time and liquid slug mass transfer in co-current upward and downward Taylor flow [J]. Catal. Today, 2009, 147: S125-S131. |
23 | SohG Y, YeohG H, TimchenkoV. Numerical investigation of formation and dissolution of CO2 bubbles within silicone oil in a cross-junction microchannel [J]. Microfluid Nanofluid, 2017, 21(12): 175. |
24 | YaoC Q, ZhaoY C, ChenG W. Multiphase processes with ionic liquids in microreactors: hydrodynamics, mass transfer and applications [J]. Chem. Eng. Sci., 2018, 189: 340-359. |
25 | OneaA, WörnerM, CacuciD G. A qualitative computational study of mass transfer in upward bubble train flow through square and rectangular mini-channels [J]. Chem. Eng. Sci., 2009, 64(7): 1416-1435. |
26 | HassanvandA, HashemabadiS H. Direct numerical simulation of mass transfer from Taylor bubble flow through a circular capillary[J]. Int. J. Heat Mass Trans., 2012, 55(21/22): 5959-5971. |
27 | JiaH W, ZhangP. Investigation of the Taylor bubble under the effect of dissolution in microchannel [J]. Chem. Eng. J., 2016, 285: 252-263. |
28 | BercicG, PintarA. The role of gas bubbles and liquid slug lengths on mass transport in the Taylor flow through capillaries [J]. Chem. Eng. Sci., 1997, 52: 3709-3719. |
29 | VanduC O, LiuH, KrishnaR. Mass transfer from Taylor bubbles rising in single capillaries [J]. Chem. Eng. Sci., 2005, 60(22): 6430-6437. |
30 | YueJ, LuoL, GonthierY, et al. An experimental study of air-water Taylor flow and mass transfer inside square microchannels [J]. Chem. Eng. Sci., 2009, 64(16): 3697-3708. |
31 | HeiszwolfJ J, KreutzerM T, van den EijndenM G, et al. Gas-liquid mass transfer of aqueous Taylor flow in monoliths [J]. Catal. Today, 2001, 69(1): 51-55. |
32 | IrandoustS, ErtléS, AnderssonB. Gas-liquid mass transfer in taylor flow through a capillary [J]. The Canadian J. Chem. Eng., 1992, 70(1): 115-119. |
33 | SobieszukP, PohoreckiR, CygańskiP, et al. Determination of the interfacial area and mass transfer coefficients in the Taylor gas-liquid flow in a microchannel [J]. Chem. Eng. Sci., 2011, 66(23): 6048-6056. |
34 | van BatenJ M, KrishnaR. CFD simulations of mass transfer from Taylor bubbles rising in circular capillaries [J]. Chem. Eng. Sci., 2004, 59(12): 2535-2545. |
35 | DongZ Y, YaoC Q, ZhangX, et al. A high-power ultrasonic microreactor and its application in gas-liquid mass transfer intensification[J]. Lab Chip, 2015, 15(4): 1145-1152. |
36 | DongZ Y, YaoC Q, ZhangY, et al. Hydrodynamics and mass transfer of oscillating gas-liquid flow in ultrasonic microreactors [J]. AIChE J., 2016, 62: 1294-1307. |
37 | ZhangP, YaoC, MaH, et al. Dynamic changes in gas-liquid mass transfer during Taylor flow in long serpentine square microchannels [J]. Chem. Eng. Sci., 2018, 182: 17-27. |
38 | SvetlovS D, AbievR S. Modeling mass transfer in a Taylor flow regime through microchannels using a three-layer model [J]. Theor. Found. Chem. Eng., 2016, 50(6): 975-989. |
39 | ButlerC, CidE, BilletA M. Modelling of mass transfer in Taylor flow: investigation with the PLIF-I technique [J]. Chem. Eng. Res. Des., 2016, 115: 292-302. |
40 | NirmalG M, LearyT F, RamachandranA. Mass transfer dynamics in the dissolution of Taylor bubbles [J]. Soft Matter., 2019, 15(13): 2746-2756. |
41 | YaoC Q, ZhengJ, ZhaoY C, et al. Characteristics of gas-liquid Taylor flow with different liquid viscosities in a rectangular microchannel [J]. Chem. Eng. J., 2019, 373: 437-445. |
42 | SalariA, GnyawaliV, GriffithsI M, et al. Shrinking microbubbles with microfluidics: mathematical modelling to control microbubble sizes [J]. Soft Matter., 2017, 13(46): 8796-8806. |
43 | ShimS, WanJ, HilgenfeldtS, et al. Dissolution without disappearing: multicomponent gas exchange for CO2 bubbles in a microfluidic channel [J]. Lab Chip, 2014, 14(14): 2428-2436. |
44 | CubaudT, SauzadeM, SunR. CO2 dissolution in water using long serpentine microchannels [J]. Biomicrofluidics, 2012, 6(2): 022002. |
45 | YangL, TanJ, WangK, et al. Mass transfer characteristics of bubbly flow in microchannels [J]. Chem. Eng. Sci., 2014, 109: 306-314. |
46 | MikaelianD, HautB, ScheidB. Bubbly flow and gas-liquid mass transfer in square and circular microchannels for stress-free and rigid interfaces: CFD analysis [J]. Microfluid Nanofluid, 2015, 19(3): 523-545. |
47 | MikaelianD, HautB, ScheidB. Bubbly flow and gas-liquid mass transfer in square and circular microchannels for stress-free and rigid interfaces: dissolution model [J]. Microfluid Nanofluid, 2015, 19(4): 899-911. |
48 | Rivero-RodriguezJ, ScheidB. Bubbles dissolution in cylindrical microchannels [J]. J. Fluid Mech., 2019, 869: 110-142. |
49 | SuY H, ChenG W, YuanQ. Influence of hydrodynamics on liquid mixing during Taylor flow in a microchannel [J]. AIChE J., 2012, 58(6): 1660-1670. |
50 | SuY H, ChenG W, ZhaoY C, et al. Intensification of liquid-liquid two-phase mass transfer by gas agitation in a microchannel [J]. AIChE J., 2009, 55(8): 1948-1958. |
51 | TanJ, LiuZ D, LuY C, et al. Process intensification of H2O2 extraction using gas-liquid-liquid microdispersion system [J]. Sep. Purif. Technol., 2011, 80(2): 225-234. |
52 | ZhangJ S, WangK, LinX Y, et al. Intensification of fast exothermic reaction by gas agitation in a microchemical system [J]. AIChE J., 2014, 60(7): 2724-2730. |
53 | ZhaoS, WangW, ShaoT, et al. Mixing performance and drug nano-particle preparation inside slugs in a gas-liquid microchannel reactor [J]. Chem. Eng. Sci., 2013, 100: 456-463. |
54 | RahmanM T, FukuyamaT, KamataN, et al. Low pressure Pd-catalyzed carbonylation in an ionic liquid using a multiphase microflow system [J]. Chem. Comm., 2006, 21: 2236-2238. |
55 | NguyenP, MohaddesD, RiordonJ, et al. Fast fluorescence-based microfluidic method for measuring minimum miscibility pressure of CO2 in crude oils [J]. Anal. Chem., 2015, 87(6): 3160-3164. |
56 | LiuN, AymonierC, LecoutreC, et al. Microfluidic approach for studying CO2 solubility in water and brine using confocal Raman spectroscopy [J]. Chem. Phys. Letter, 2012, 551: 139-143. |
57 | LutherS K, StehleS, WeihsK, et al. Determination of vapor-liquid equilibrium data in microfluidic segmented flows at elevated pressures using Raman spectroscopy [J]. Anal. Chem., 2015, 87(16): 8165-8172. |
58 | LiW, LiuK, SimmsR, et al. Microfluidic study of fast gas-liquid reactions [J]. J. Am. Chem. Soc., 2012, 134(6): 3127-3132. |
59 | YeC B, DangM H, YaoC Q, et al. Process analysis on CO2 absorption by monoethanolamine solutions in microchannel reactors [J]. Chem. Eng. J., 2013, 225: 120-127. |
60 | WanJ, BickA, SullivanM, et al. Controllable microfluidic production of microbubbles in water-in-oil emulsions and the formation of porous microparticles [J]. Adv. Mater., 2008, 20(17): 3314-3318. |
61 | ParkJ I, JagadeesanD, WilliamsR, et al. Microbubbles loaded with nanoparticles: a route to multiple imaging modalities [J]. ACS Nano., 2010, 4(11): 6579-6586. |
62 | ChangY W, HeP, MarquezS M, et al. Uniform yeast cell assembly via microfluidics[J]. Biomicrofluidics, 2012, 6: 024118. |
[1] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[2] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[3] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[4] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[5] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[6] | 袁佳琦, 刘政, 黄锐, 张乐福, 贺登辉. 泡状入流条件下旋流泵能量转换特性研究[J]. 化工学报, 2023, 74(9): 3807-3820. |
[7] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[8] | 岳林静, 廖艺涵, 薛源, 李雪洁, 李玉星, 刘翠伟. 凹坑缺陷对厚孔板喉部空化流动特性影响研究[J]. 化工学报, 2023, 74(8): 3292-3308. |
[9] | 王海, 林宏, 王晨, 许浩洁, 左磊, 王军锋. 高压静电场强化多孔介质表面沸腾传热特性研究[J]. 化工学报, 2023, 74(7): 2869-2879. |
[10] | 张媛媛, 曲江源, 苏欣欣, 杨静, 张锴. 循环流化床燃煤机组SNCR脱硝过程气液传质和反应特性[J]. 化工学报, 2023, 74(6): 2404-2415. |
[11] | 王泽栋, 石至平, 刘丽艳. 考虑气泡非均匀耗散的矩形反应器声流场数值模拟及结构优化[J]. 化工学报, 2023, 74(5): 1965-1973. |
[12] | 王皓, 唐思扬, 钟山, 梁斌. MEA吸收CO2富液解吸过程中固体颗粒表面的强化作用分析[J]. 化工学报, 2023, 74(4): 1539-1548. |
[13] | 张银宁, 王进卿, 冯致, 詹明秀, 徐旭, 张光学, 池作和. 升温条件下多孔介质内气泡的生长和聚并行为[J]. 化工学报, 2023, 74(4): 1509-1518. |
[14] | 贾露凡, 王艺颖, 董钰漫, 李沁园, 谢鑫, 苑昊, 孟涛. 微流控双水相贴壁液滴流动强化酶促反应研究[J]. 化工学报, 2023, 74(3): 1239-1246. |
[15] | 张雪婷, 胡激江, 赵晶, 李伯耿. 高分子量聚丙二醇在微通道反应器中的制备[J]. 化工学报, 2023, 74(3): 1343-1351. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||