化工学报 ›› 2020, Vol. 71 ›› Issue (5): 2164-2172.DOI: 10.11949/0438-1157.20191195
收稿日期:
2019-10-12
修回日期:
2020-03-03
出版日期:
2020-05-05
发布日期:
2020-05-05
通讯作者:
杨庆,杨庆春
作者简介:
杨庆(1995—),女,硕士研究生,基金资助:
Qing YANG(),Simin XU,Dawei ZHANG,Qingchun YANG(
)
Received:
2019-10-12
Revised:
2020-03-03
Online:
2020-05-05
Published:
2020-05-05
Contact:
Qing YANG,Qingchun YANG
摘要:
传统石油制乙二醇(OtEG)路线严重依赖于石油资源且生产成本高,而我国拥有丰富的煤炭资源,使得煤制乙二醇(CtEG)技术日益受到重视。基于全流程模拟结果,对OtEG和CtEG路线进行了详细的技术经济分析。结果表明,CtEG路线单位产品的能耗比OtEG高2.62 t-ce标准煤;但CtEG具有较好的成本优势,约可节省成本802 CNY?t-1,但其总投资约为OtEG的2.58倍。适当扩大生产规模可明显提高OtEG和CtEG工艺的经济效益,尤其是降低CtEG的总投资。通过分析原料价格波动对两条路线竞争力的影响发现,当油价低于40 USD?bbl-1(美元/桶),且煤价高于500 CNY?t-1时,CtEG与OtEG的生产成本比将高于1.0;当油价高于60 USD?bbl-1,即使煤价高达850 CNY?t-1,生产成本比也将低于1.0。此外,CtEG的CO2排放量和水耗分别比OtEG高约5 t?t-1和20 t?t-1。因此,在大力发展CtEG产业的同时,亟需解决其高能耗、高排放等问题。
中图分类号:
杨庆, 许思敏, 张大伟, 杨庆春. 石油与煤路线制乙二醇过程的技术经济分析[J]. 化工学报, 2020, 71(5): 2164-2172.
Qing YANG, Simin XU, Dawei ZHANG, Qingchun YANG. Techno-economic analysis of oil and coal to ethylene glycol processes[J]. CIESC Journal, 2020, 71(5): 2164-2172.
Item | Ethylene/t | Coal/t | O2 /t | HP steam /t | MP steam /t | LP steam/t | Recycle water/t | Fresh water/t | Electricity /(kW·h) |
---|---|---|---|---|---|---|---|---|---|
OtEG process | 0.68 | N/A | 0.788 | 0 | 0.5 | 0.15 | 180 | 3.8 | 285 |
CtEG process | N/A | 2.54 | 1.36 | 2.08 | 3.28 | 4.77 | 500 | 24.2 | 878 |
表1 OtEG和CtEG过程的主要模拟结果
Table 1 Main simulation results of OtEG and CtEG processes
Item | Ethylene/t | Coal/t | O2 /t | HP steam /t | MP steam /t | LP steam/t | Recycle water/t | Fresh water/t | Electricity /(kW·h) |
---|---|---|---|---|---|---|---|---|---|
OtEG process | 0.68 | N/A | 0.788 | 0 | 0.5 | 0.15 | 180 | 3.8 | 285 |
CtEG process | N/A | 2.54 | 1.36 | 2.08 | 3.28 | 4.77 | 500 | 24.2 | 878 |
1 | Zhou H R, Qian Y, Kraslawski A, et al. Life-cycle assessment of alternative liquid fuels production in China [J]. Energy, 2017, 139: 507-522. |
2 | Pang J, Zheng M Y, Li X S, et al. Unlock the compact structure of lignocellulosic biomass by mild ball milling for ethylene glycol production [J]. ACS Sustainable Chemistry & Engineering, 2018, 7(1): 679-687. |
3 | Yang Q C, Zhang D W, Zhou H R, et al. Process simulation, analysis and optimization of a coal to ethylene glycol process [J]. Energy, 2018, 155: 521-534. |
4 | Xiang D, Qian Y, Man Y, et al. Techno-economic analysis of the coal-to-olefins process in comparison with the oil-to-olefins process [J]. Applied Energy, 2014, 113: 639-647. |
5 | Zhang Q, Hu S Y, Chen D J. A comparison between coal-to-olefins and oil-based ethylene in China: an economic and environmental prospective [J]. Journal of Cleaner Production, 2017, 165: 1351-1360. |
6 | Zhou H R, Yang S Y, Xiao H H, et al. Modeling and techno-economic analysis of shale-to-liquid and coal-to-liquid fuels processes [J]. Energy, 2016, 109: 201-210. |
7 | Zhou H R, Yang Q C, Zhu S, et al. Life cycle comparison of greenhouse gas emissions and water consumption for coal and oil shale to liquid fuels [J]. Resources, Conservation and Recycling, 2019, 144: 74-81. |
8 | Mohajerani S, Kumar A, Oni A O. A techno-economic assessment of gas-to-liquid and coal-to-liquid plants through the development of scale factors [J]. Energy, 2018, 150: 681-693. |
9 | 张丽君. 煤制乙二醇经济性分析研究 [J]. 能源化工, 2016, 37(2): 1-6. |
Zhang L J. Economic analysis of coal-based ethylene glycol [J]. Energy Chemical Industry, 2016, 37(2): 1-6. | |
10 | Li G, Liu Z Y, Liu T, et al. Techno-economic analysis of a coal to hydrogen process based on ash agglomerating fluidized bed gasification [J]. Energy Conversion and Management, 2018, 164: 552-559. |
11 | Morosuk T, Tsatsaronis G. Advanced exergy-based methods used to understand and improve energy-conversion systems [J]. Energy, 2019, 169: 238-246. |
12 | Ebrahimi M, Carriveau R, Ting D S K, et al. Conventional and advanced exergy analysis of a grid connected underwater compressed air energy storage facility [J]. Applied Energy, 2019, 242: 1198-1208. |
13 | 郑丹星. 化工热力学教程 [M]. 北京: 中国石化出版社, 2000: 53. |
Zheng D X. Chemical Engineering Thermodynamics Course [M]. Beijing: China Petrochemical Press, 2000: 53. | |
14 | 孙兰义. 化工过程模拟实训: Aspen Plus教程 [M]. 北京: 化学工业出版社, 2012: 125-178. |
Sun L Y. Chemical Process Simulation Training: Aspen Plus Course [M]. Beijing: Chemical Industry Press, 2012: 125-178. | |
15 | 陈琳, 刘辉, 邹润, 等. 环氧乙烷工艺流程模拟及系统分析 [J]. 北京化工大学学报(自然科学版), 2017, 44(4): 20-26. |
Chen L, Liu H, Zou R, et al. Simulation and system analysis of ethylene oxide process [J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2017, 44(4): 20-26. | |
16 | Wang Q Q, Ma Y, Li S Y, et al. Expanding exergy analysis for the sustainability assessment of SJ-type oil shale retorting process [J]. Energy Conversion and Management, 2019, 187: 29-40. |
17 | Yang Q C, Zhang C W, Zhang D W, et al. Development of a coke oven gas assisted coal to ethylene glycol process for high techno-economic performance and low emission[J]. Industrial & Engineering Chemistry Research, 2018, 57(22): 7600-7612. |
18 | 刘硕士, 杨思宇, 顾竞芳, 等. 气煤联供实现资源高效利用和碳减排技术进展 [J]. 化工进展, 2019, 38(1): 664-671. |
Liu S S, Yang S Y, Gu J F, et al. Advances in gas-coal combined technologies for efficient resource utilization and carbon emission reduction [J]. Chemical Industry and Engineering Progress, 2019, 38(1): 664-671. | |
19 | Yang Q C, Liu X, Zhu S, et al. Efficient utilization of CO2 in a coal to ethylene glycol process integrated with dry/steam-mixed reforming: conceptual design and techno-economic analysis [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(3): 3496-3510. |
20 | 朱顺, 郭琦, 张大伟, 等. 集成CO2高效利用的煤制乙二醇过程设计与系统分析[J]. 化工学报, 2019, 70(2): 772-779. |
Zhu S, Guo Q, Zhang D W, et al. Design and system analysis of coal-to-ethylene glycol process with integrated CO2 efficient utilization [J]. CIESC Journal, 2019, 70(2): 772-779. | |
21 | Gao J T, Zhang Q, Wang X Z, et al. Exergy and exergoeconomic analyses with modeling for CO2 allocation of coal-fired CHP plants [J]. Energy, 2018, 152: 562-575. |
22 | Huang Y W, Chen M Q, Li Q H, et al. A critical evaluation on chemical exergy and its correlation with high heating value for single and multi-component typical plastic wastes [J]. Energy, 2018, 156: 548-554. |
23 | Frate G F, Ferrari L, Lensi R, et al. Steam expander as a throttling valve replacement in industrial plants: a techno-economic feasibility analysis [J]. Applied Energy, 2019, 238: 11-21. |
24 | Xiang D, Xiang J J, Sun Z, et al. The integrated coke-oven gas and pulverized coke gasification for methanol production with highly efficient hydrogen utilization [J]. Energy, 2017, 140: 78-91. |
25 | Nguyen T V, Clausen L R. Techno-economic analysis of polygeneration systems based on catalytic hydropyrolysis for the production of bio-oil and fuels [J]. Energy Conversion and Management, 2019, 184: 539-558. |
26 | Xiang D, Yang S, Liu X, et al. Techno-economic performance of the coal-to-olefins process with CCS [J]. Chemical Engineering Journal, 2014, 240: 45-54. |
27 | Xiang D, Yang S, Qian Y. Techno-economic analysis and comparison of coal based olefins processes [J]. Energy Conversion and Management, 2016, 110: 33-41. |
28 | Adefarati T, Bansal R C. Reliability, economic and environmental analysis of a microgrid system in the presence of renewable energy resources [J]. Applied Energy, 2019, 236: 1089-1114. |
29 | 康丽霞, 麻晨露, 刘永忠. 混合供电系统中退役电池的模块化储能操作优化 [J]. 化工学报, 2019, 70(2): 599-606. |
Kang L X, Ma C L, Liu Y Z. Optimization of modular energy storage operation for decommissioned batteries in hybrid power systems [J]. CIESC Journal, 2019, 70(2): 599-606. | |
30 | Masih M, Algahtani I, de Mello L. Price dynamics of crude oil and the regional ethylene markets [J]. Energy Economics, 2010, 32(6): 1435-1444. |
31 | 王韧. 油价波动背景下煤制乙二醇产品竞争力分析 [J]. 化学工业, 2015, 33(4): 32-41. |
Wang R. Competitive analysis of coal-to-glycol products under the background of oil price fluctuations [J]. Chemical Industry, 2015, 33(4): 32-41. | |
32 | Yi Q, Wu G S, Gong M H, et al. A feasibility study for CO2 recycle assistance with coke oven gas to synthetic natural gas [J]. Applied Energy, 2017, 193: 149-161. |
33 | Chen J J, Yang S Y, Qian Y. A novel path for carbon-rich resource utilization with lower emission and higher efficiency: an integrated process of coal gasification and coking to methanol production [J]. Energy, 2019, 177: 304-318. |
34 | Yang S Y, Yang Q C, Man Y, et al. Conceptual design and analysis of a natural gas assisted coal-to-olefins process for CO2 reuse [J]. Industrial & Engineering Chemistry Research, 2013, 52(40): 14406-14414. |
35 | Man Y, Yang S Y, Zhang J, et al. Conceptual design of coke-oven gas assisted coal to olefins process for high energy efficiency and low CO2 emission[J]. Applied Energy, 2014, 133: 197-205. |
36 | Yang Q C, Zhu S, Yu P J, et al. Thermodynamic and techno-economic analysis of coal to ethylene glycol process (CtEG) with different coal gasifiers [J]. Energy Conversion and Management, 2019, 191: 80-92. |
37 | 闫磊, 陈思宇, 肖美良子, 等. 煤制烯烃基长链烷基二甲苯合成研究 [J]. 化工学报, 2019, 70: 235-241. |
Yan L, Chen S Y, Xiao M L Z, et al. Study on synthesis of coal-to-olefin long-chain alkyl xylene [J]. CIESC Journal, 2019, 70: 235-241. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[3] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[4] | 常明慧, 王林, 苑佳佳, 曹艺飞. 盐溶液蓄能型热泵循环特性研究[J]. 化工学报, 2023, 74(S1): 329-337. |
[5] | 张化福, 童莉葛, 张振涛, 杨俊玲, 王立, 张俊浩. 机械蒸汽压缩蒸发技术研究现状与发展趋势[J]. 化工学报, 2023, 74(S1): 8-24. |
[6] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[7] | 张龙, 宋孟杰, 邵苛苛, 张旋, 沈俊, 高润淼, 甄泽康, 江正勇. 管翅式换热器迎风侧翅片末端霜层生长模拟研究[J]. 化工学报, 2023, 74(S1): 179-182. |
[8] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[9] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[10] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[11] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[12] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[13] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[14] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[15] | 赵佳佳, 田世祥, 李鹏, 谢洪高. SiO2-H2O纳米流体强化煤尘润湿性的微观机理研究[J]. 化工学报, 2023, 74(9): 3931-3945. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 421
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 820
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||