化工学报 ›› 2020, Vol. 71 ›› Issue (5): 2139-2150.DOI: 10.11949/0438-1157.20191257
赵洪波1(),刘杰1(),马彪1,郭强1,刘晓辉2,潘凤文2
收稿日期:
2019-10-21
修回日期:
2020-02-13
出版日期:
2020-05-05
发布日期:
2020-05-05
通讯作者:
刘杰
作者简介:
赵洪波(1994—),男,硕士研究生,基金资助:
Hongbo ZHAO1(),Jie LIU1(),Biao MA1,Qiang GUO1,Xiaohui LIU2,Fengwen PAN2
Received:
2019-10-21
Revised:
2020-02-13
Online:
2020-05-05
Published:
2020-05-05
Contact:
Jie LIU
摘要:
针对目前燃料电池热管理系统在变载时存在温度波动较大、调节时间较长和响应速度较慢等问题,本文提出了流量同时跟随电流及功率方式和神经网络自抗扰方法两种热管理控制策略。结果表明:流量同时跟随电流及功率控制策略能够有效地削弱水泵和散热器风扇的耦合作用,明显减少电堆进出口冷却水温度及其温差的超调量和调节时间。此外,虽然神经网络自抗扰控制策略在最大功率工况下的控制效果较差,但总体控制效果比流量跟随电流控制策略好。
中图分类号:
赵洪波, 刘杰, 马彪, 郭强, 刘晓辉, 潘凤文. 水冷PEMFC热管理系统控制策略及仿真研究[J]. 化工学报, 2020, 71(5): 2139-2150.
Hongbo ZHAO, Jie LIU, Biao MA, Qiang GUO, Xiaohui LIU, Fengwen PAN. Control strategy and simulation research of water-cooled PEMFC thermal management system[J]. CIESC Journal, 2020, 71(5): 2139-2150.
参数 | 数值 |
---|---|
电堆进口冷却水温度/℃ | 60 |
冷却水温差/℃ | 5.5 |
电流变化/A | 18—25—28—30 |
表1 热管理系统控制实验参数
Table 1 Thermal management system control experimental parameters
参数 | 数值 |
---|---|
电堆进口冷却水温度/℃ | 60 |
冷却水温差/℃ | 5.5 |
电流变化/A | 18—25—28—30 |
空气 过量比 | 氢气 过量比 | 阴极压力/kPa | 阳极压力/kPa | 阴极湿度/% | 阳极湿度/% |
---|---|---|---|---|---|
3 | 1.5 | 100 | 120 | 80 | 0 |
表2 燃料电池实验参数
Table 2 Fuel cell experimental parameters
空气 过量比 | 氢气 过量比 | 阴极压力/kPa | 阳极压力/kPa | 阴极湿度/% | 阳极湿度/% |
---|---|---|---|---|---|
3 | 1.5 | 100 | 120 | 80 | 0 |
图13 燃料电池堆进出口冷却水温度及温差随时间的变化(策略A)
Fig.13 Temperature and temperature difference of cooling water at the fuel cell stack inlet and outlet of the reactor change with time(Strategy A)
图14 燃料电池堆进出口冷却水温度及温差随时间的变化(策略B)
Fig.14 Temperature and temperature difference of cooling water at the fuel cell stack inlet and outlet of the reactor change with time(Strategy B)
图15 燃料电池堆进出口冷却水温度及温差随时间的变化(策略C)
Fig.15 Temperature and temperature difference of cooling water at the fuel cell stack inlet and outlet of the reactor change with time(Strategy C)
图16 燃料电池堆进出口冷却水温度及温差随时间的变化(策略对比)
Fig.16 Temperature and temperature difference of cooling water at the fuel cell stack inlet and outlet of the reactor change with time(strategy comparison)
1 | 李奇. 质子交换膜燃料电池系统建模及其控制方法研究[D]. 成都: 西南交通大学, 2011. |
Li Q. Research on modeling and control of proton exchange membrane fuel cell system[D]. Chengdu: Southwest Jiaotong University, 2011. | |
2 | Kandlikar S G, Lu Z. Thermal management issues in a PEMFC stack—a brief review of current status[J]. Applied Thermal Engineering, 2009, 29(7): 1276-1280. |
3 | Li Q, Chen W, Liu Z, et al. Control of proton exchange membrane fuel cell system breathing based on maximum net power control strategy[J]. Journal of Power Sources, 2013, 241: 212-218. |
4 | Zhao X, Li Y, Liu Z, et al. Thermal management system modeling of a water-cooled proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2015, 40(7): 3048-3056. |
5 | Zhang Y J, Ouyang M G, Luo J X, et al. Mathematical modeling of vehicle fuel cell power system thermal management[R]. SAETechnical Paper, 2003. |
6 | Rowe A, Li X. Mathematical modeling of proton exchange membrane fuel cells[J]. Journal of Power Sources, 2001, 102(1/2): 82-96. |
7 | Yoon Y G, Yang T H, Park G G, et al. A multi-layer structured cathode for the PEMFC[J]. Journal of Power Sources, 2003, 118(1/2): 189-192. |
8 | Zhao D, Gao F, Massonnat P, et al. Parameter sensitivity analysis and local temperature distribution effect for a PEMFC system[J]. IEEE Transactions on Energy Conversion, 2015, 30(3): 1008-1018. |
9 | Carton J G, Lawlor V, Olabi A G, et al. Water droplet accumulation and motion in PEM (proton exchange membrane) fuel cell mini-channels[J]. Energy, 2012, 39(1): 63-73. |
10 | Zamel N, Li X. Non‐isothermal multi‐phase modeling of PEM fuel cell cathode[J]. International Journal of Energy Research, 2010, 34(7): 568-584. |
11 | Pandiyan S, Jayakumar K, Rajalakshmi N, et al. Thermal and electrical energy management in a PEMFC stack—an analytical approach[J]. International Journal of Heat and Mass Transfer, 2008, 51(3/4): 469-473. |
12 | Rojas J D, Ocampo-Martínez C, Kunusch C. Thermal modelling approach and model predictive control of a water-cooled PEM fuel cell system[C]//IECON 2013-39th Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2013: 3806-3811. |
13 | Ahn J W, Choe S Y. Coolant controls of a PEM fuel cell system[J]. Journal of Power Sources, 2008, 179(1): 252-264. |
14 | Cao T F, Lin H, Chen L, et al. Numerical investigation of the coupled water and thermal management in PEM fuel cell[J]. Applied Energy, 2013, 112: 1115-1125. |
15 | Liso V, Nielsen M P, Kær S K, et al. Thermal modeling and temperature control of a PEM fuel cell system for forklift applications[J]. International Journal of Hydrogen Energy, 2014, 39(16): 8410-8420. |
16 | Cheng S, Fang C, Xu L, et al. Model-based temperature regulation of a PEM fuel cell system on a city bus[J]. International Journal of Hydrogen Energy, 2015, 40(39): 13566-13575. |
17 | Saygili Y, Eroglu I, Kincal S. Model based temperature controller development for water cooled PEM fuel cell systems[J]. International Journal of Hydrogen Energy, 2015, 40(1): 615-622. |
18 | 陈维荣, 牛茁, 韩喆, 等. 水冷 PEMFC 热管理系统流量跟随控制策略[J]. 化工学报, 2017, 68(4): 1490-1498. |
Chen W R, Niu Z, Han Z, et al. Flow following control strategy for thermal management of water-cooled PEMFC[J]. CIESC Journal, 2017, 68(4): 1490-1498. | |
19 | Huang L, Chen J, Liu Z, et al. Adaptive thermal control for PEMFC systems with guaranteed performance[J]. International Journal of Hydrogen Energy, 2018, 43(25): 11550-11558. |
20 | Pourrahmani H, Moghimi M, Siavashi M. Thermal management in PEMFCs: the respective effects of porous media in the gas flow channel[J]. International Journal of Hydrogen Energy, 2019, 44(5): 3121-3137. |
21 | 陈维荣, 李艳昆, 李岩, 等. 水冷型质子交换膜燃料电池温度控制策略[J]. 西南交通大学学报, 2015, 50(3): 393-399. |
Chen W R, Li Y K, Li Y, et al. Temperature control strategy for water-cooled proton exchange membrane fuel cells[J]. Journal of Southwest Jiaotong University, 2015, 50(3) : 393-399. | |
22 | Han J, Park J, Yu S. Control strategy of cooling system for the optimization of parasitic power of automotive fuel cell system[J]. International Journal of Hydrogen Energy, 2015, 40(39): 13549-13557. |
23 | Yu S, Jung D. Thermal management strategy for a proton exchange membrane fuel cell system with a large active cell area[J]. Renewable Energy, 2008, 33(12): 2540-2548. |
24 | Yu X, Zhou B, Sobiesiak A. Water and thermal management for Ballard PEM fuel cell stack[J]. Journal of Power Sources, 2005, 147(1/2): 184-195. |
25 | 徐政, 章飞, 何少强. 光伏扬水系统的优化设计[J]. 太阳能学报, 2013, 34(12): 2151-2158. |
Xu Z, Zhang F, He S Q. Optimization of solar water pumping system[J]. Acta Energiae Solaris Sinica, 2013, 34(12):2151-2158. | |
26 | 韩京清. 自抗扰控制技术: 估计补偿不确定因素的控制技术[M]. 北京: 国防工业出版社, 2008. |
Han J Q. Active Disturbance Rejection Control Technique—the Technique for Estimating and Compensating the Uncertaintics[M]. Beijing: National Defense Industry Press, 2008. | |
27 | 史青. 水冷型 PEMFC 热管理系统建模与控制研究[D]. 成都: 西南交通大学, 2017. |
Shi Q. Study on the water-cooled PEMFC thermal management system modeling and control[D]. Chengdu: Southwest Jiaotong University, 2017. | |
28 | 牛茁. 水冷型质子交换膜燃料电池热管理系统控制研究[D]. 成都: 西南交通大学, 2018. |
Niu Z. Study thermal management system control of water-cooled PEMFC[D]. Chengdu: Southwest Jiaotong University, 2018. | |
29 | Pukrushpan J T, Stefanopoulou A G, Peng H. Control of Fuel Cell Power Systems: Principles, Modeling, Analysis and Feedback Design[M]. Springer Science & Business Media, 2004. |
30 | 王瑞敏. 基于神经网络辨识模型的质子交换膜燃料电池系统建模与控制研究[D]. 上海: 上海交通大学, 2008. |
Wang R M. Modeling and control based on proton exchange membrane fuel cell system neural network identification model[D]. Shanghai: Shanghai Jiao Tong University, 2008. |
[1] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[2] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[3] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[4] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[5] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[6] | 尹刚, 李伊惠, 何飞, 曹文琦, 王民, 颜非亚, 向禹, 卢剑, 罗斌, 卢润廷. 基于KPCA和SVM的铝电解槽漏槽事故预警方法[J]. 化工学报, 2023, 74(8): 3419-3428. |
[7] | 徐野, 黄文君, 米俊芃, 申川川, 金建祥. 多源信息融合的离心式压缩机喘振诊断方法[J]. 化工学报, 2023, 74(7): 2979-2987. |
[8] | 高学金, 姚玉卓, 韩华云, 齐咏生. 基于注意力动态卷积自编码器的发酵过程故障监测[J]. 化工学报, 2023, 74(6): 2503-2521. |
[9] | 黄磊, 孔令学, 白进, 李怀柱, 郭振兴, 白宗庆, 李平, 李文. 油页岩添加对准东高钠煤灰熔融行为影响的研究[J]. 化工学报, 2023, 74(5): 2123-2135. |
[10] | 贠程, 王倩琳, 陈锋, 张鑫, 窦站, 颜廷俊. 基于社团结构的化工过程风险演化路径深度挖掘[J]. 化工学报, 2023, 74(4): 1639-1650. |
[11] | 罗来明, 张劲, 郭志斌, 王海宁, 卢善富, 相艳. 1~5 kW高温聚合物电解质膜燃料电池堆的理论模拟与组装测试[J]. 化工学报, 2023, 74(4): 1724-1734. |
[12] | 吴选军, 王超, 曹子健, 蔡卫权. 数据与物理信息混合驱动的固定床吸附穿透深度学习模型[J]. 化工学报, 2023, 74(3): 1145-1160. |
[13] | 钱志广, 樊越, 王世学, 岳利可, 王金山, 朱禹. 吹扫条件对PEMFC阻抗弛豫现象和低温启动的影响[J]. 化工学报, 2023, 74(3): 1286-1293. |
[14] | 张江淮, 赵众. 碳三加氢装置鲁棒最小协方差约束控制及应用[J]. 化工学报, 2023, 74(3): 1216-1227. |
[15] | 吴心远, 刘奇磊, 曹博渊, 张磊, 都健. Group2vec:基于无监督机器学习的基团向量表示及其物性预测应用[J]. 化工学报, 2023, 74(3): 1187-1194. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||