化工学报 ›› 2020, Vol. 71 ›› Issue (8): 3644-3651.DOI: 10.11949/0438-1157.20200116
收稿日期:
2020-02-05
修回日期:
2020-05-15
出版日期:
2020-08-05
发布日期:
2020-08-05
通讯作者:
杨娜
作者简介:
张吕鸿(1965—),女,博士,教授,Lyuhong ZHANG(),Haopeng MA,Xiaowei TANTAI,Na YANG()
Received:
2020-02-05
Revised:
2020-05-15
Online:
2020-08-05
Published:
2020-08-05
Contact:
Na YANG
摘要:
低共熔溶剂(DESs)已被广泛研究并应用于酸性气体的吸收,本研究发现苯甲酸类DESs能够可逆高效地吸收一氧化氮(NO)。以苯甲酸(BA)、硫脲、尿素和咪唑为氢键供体(HBD),以离子液体为氢键受体(HBA)制备了一系列的DESs。吸收NO的实验结果表明,以氯化四丁基膦(P4444Cl)为HBA和以BA为HBD的DESs表现出较高的NO吸收速率和饱和吸收量。BA/P4444Cl (1∶2) DES在101.3 kPa、303.15 K下,NO吸收量为2.75 mol/mol。热重测试和再生实验的结果表明,BA/P4444Cl (1∶2) DES具有理想的热稳定性和重复使用性。通过FTIR、1H NMR和高斯模拟计算,探讨了BA/P4444Cl (1∶2) DES对NO的吸收机理,发现NO与BA的含氢氧原子之间存在化学相互作用,且BA的易去质子化性质有利于NO的吸收。
中图分类号:
张吕鸿, 马号朋, 澹台晓伟, 杨娜. 苯甲酸型低共熔溶剂吸收一氧化氮的性能研究[J]. 化工学报, 2020, 71(8): 3644-3651.
Lyuhong ZHANG, Haopeng MA, Xiaowei TANTAI, Na YANG. Study on the absorption of nitric oxide by benzoic acid-based deep eutectic solvents[J]. CIESC Journal, 2020, 71(8): 3644-3651.
吸收剂(摩尔比) | 吸收温度 (解吸条件)/K | NO吸收量/ | 文献 | |
---|---|---|---|---|
(mol/mol) | (g/g) | |||
BA/P4444Cl (1∶2) | 303.15/(363.15) | 2.75 | 0.116 | 本文 |
BA/P4444Br (1∶2) | 303.15 | 1.79 | 0.067 | 本文 |
BA/BmimCl (1∶2) | 303.15 | 1.32 | 0.084 | 本文 |
BA/BmimCl (1∶1) | 303.15 | 0.79 | 0.080 | 本文 |
BA/BmimCl (2∶1) | 303.15 | 1.62 | 0.115 | 本文 |
BA/BmimCl (3∶1) | 303.15 | 2.70 | 0.149 | 本文 |
BA/BmimBr (1∶2) | 303.15 | 0.95 | 0.051 | 本文 |
Thu/BmimCl (1∶1) | 303.15 | 0.65 | 0.078 | 本文 |
Urea/BmimCl (1∶1) | 303.15 | 0.57 | 0.073 | 本文 |
Imid/BmimCl (1∶1) | 303.15 | 0.28 | 0.035 | 本文 |
Tetz/P4444Cl (1∶1) | 303.15/(353.15) | 2.10 | 0.173 | [ |
Tetz/N4444Cl (1∶1) | 303.15 | 1.46 | 0.126 | [ |
Triz/P4444Cl (1∶1) | 303.15 | 0.71 | 0.059 | [ |
Tetz/ChCl | 343.15 | 0.86 | 0.123 | [ |
Imid/P4444Cl (1∶1) | 303.15 | 0.16 | 0.013 | [ |
[P66614][Tetz] | 303.15/(353.15) | 4.52 | 0.246 | [ |
1,3-DMTU/P4444Cl (3∶1) | 303.15/(353.15) | 4.25 | 0.210 | [ |
1,3-DMTU/P4444Cl (1∶1) | 303.15 | 2.13 | 0.160 | [ |
1,3-DMTU/N4444Cl (1∶1) | 303.15 | 2.05 | 0.161 | [ |
1,3-DMTU/P4444Br (1∶1) | 303.15 | 1.13 | 0.076 | [ |
1,3-DMU/P4444Br (1∶1) | 303.15/(353.15) | 0.66 | 0.046 | [ |
CPL/N4444F (2∶1) | 338.15(真空) | 0.16 | 0.010 | [ |
表1 不同DESs和ILs的NO吸收量
Table 1 NO absorption of different DESs and ILs
吸收剂(摩尔比) | 吸收温度 (解吸条件)/K | NO吸收量/ | 文献 | |
---|---|---|---|---|
(mol/mol) | (g/g) | |||
BA/P4444Cl (1∶2) | 303.15/(363.15) | 2.75 | 0.116 | 本文 |
BA/P4444Br (1∶2) | 303.15 | 1.79 | 0.067 | 本文 |
BA/BmimCl (1∶2) | 303.15 | 1.32 | 0.084 | 本文 |
BA/BmimCl (1∶1) | 303.15 | 0.79 | 0.080 | 本文 |
BA/BmimCl (2∶1) | 303.15 | 1.62 | 0.115 | 本文 |
BA/BmimCl (3∶1) | 303.15 | 2.70 | 0.149 | 本文 |
BA/BmimBr (1∶2) | 303.15 | 0.95 | 0.051 | 本文 |
Thu/BmimCl (1∶1) | 303.15 | 0.65 | 0.078 | 本文 |
Urea/BmimCl (1∶1) | 303.15 | 0.57 | 0.073 | 本文 |
Imid/BmimCl (1∶1) | 303.15 | 0.28 | 0.035 | 本文 |
Tetz/P4444Cl (1∶1) | 303.15/(353.15) | 2.10 | 0.173 | [ |
Tetz/N4444Cl (1∶1) | 303.15 | 1.46 | 0.126 | [ |
Triz/P4444Cl (1∶1) | 303.15 | 0.71 | 0.059 | [ |
Tetz/ChCl | 343.15 | 0.86 | 0.123 | [ |
Imid/P4444Cl (1∶1) | 303.15 | 0.16 | 0.013 | [ |
[P66614][Tetz] | 303.15/(353.15) | 4.52 | 0.246 | [ |
1,3-DMTU/P4444Cl (3∶1) | 303.15/(353.15) | 4.25 | 0.210 | [ |
1,3-DMTU/P4444Cl (1∶1) | 303.15 | 2.13 | 0.160 | [ |
1,3-DMTU/N4444Cl (1∶1) | 303.15 | 2.05 | 0.161 | [ |
1,3-DMTU/P4444Br (1∶1) | 303.15 | 1.13 | 0.076 | [ |
1,3-DMU/P4444Br (1∶1) | 303.15/(353.15) | 0.66 | 0.046 | [ |
CPL/N4444F (2∶1) | 338.15(真空) | 0.16 | 0.010 | [ |
1 | Zhang X W, Tong H L, Zhang H, et al. Nitrogen oxides absorption on calcium hydroxide at low temperature [J]. Industrial & Engineering Chemistry Research, 2008, 47(11): 3827-3833. |
2 | Lei Z G, Liu X Y, Jia M R. Modeling of selective catalytic reduction (SCR) for NO removal using monolithic honeycomb catalyst [J]. Energy & Fuels, 2009, 23(12): 6146-6151. |
3 | Takeuchi M, Matsumoto S. NOx storage-reduction catalysts for gasoline engines [J]. Topics in Catalysis, 2004, 28(1/2/3/4): 151-156. |
4 | Lim T H, Jeong S M, Kim S D, et al. Photocatalytic decomposition of NO by TiO2 particles [J]. Journal of Photochemistry and Photobiology A-Chemistry, 2000, 134(3): 209-217. |
5 | Liu N, Lu B H, Zhang S H, et al. Evaluation of nitric oxide removal from simulated flue gas by Fe (Ⅱ) EDTA/Fe (Ⅱ) citrate mixed absorbents [J]. Energy & Fuels, 2012, 26(8): 4910-4916. |
6 | Bin L J, Done K S. Kinetics of NOx reduction by urea solution in pilot scale reactor [J]. Journal of Chemical Engineering of Japan, 1996, 29(4): 620-626. |
7 | Sada E, Kumazawa H, Kudo I, et al. Absorption of lean NOx in aqueous solutions of NaClO2 and NaOH [J]. Industrial & Engineering Chemistry Process Design & Development, 1979, 18(2): 275-278. |
8 | Culotta E, Koshland D E. NO news is good news [J]. Science, 1992, 258(5090): 1862-1865. |
9 | Rogers D R. Chemistry: ionic liquids—solvents of the future? [J]. Science, 2003, 302(5646): 792-793. |
10 | Reetz M T, Wiesenhofer W, Francio G, et al. Continuous flow enzymatic kinetic resolution and enantiomer separation using ionic liquid/supercritical carbon dioxide media [J]. Advanced Synthesis & Catalysis, 2003, 345(11): 1221-1228. |
11 | Maton C, de Vos N, Stevens C V. Ionic liquid thermal stabilities: decomposition mechanisms and analysis tools [J]. Chemical Society Reviews, 2013, 42(13): 5963-5977. |
12 | Wu W Z, Han B X, Gao H X, et al. Desulfurization of flue gas: SO2 absorption by an ionic liquid [J]. Angewandte Chemie-International Edition, 2004, 43(18): 2415-2417. |
13 | Gonzalez-Miquel M, Bedia J, Abrusci C, et al. Anion effects on kinetics and thermodynamics of CO2 absorption in ionic liquids [J]. Journal of Physical Chemistry B, 2013, 117(12): 3398-3406. |
14 | Wang X, Zeng S J, Wang J L, et al. Selective separation of hydrogen sulfide with pyridinium-based ionic liquids [J]. Industrial & Engineering Chemistry Research, 2018, 57(4): 1284-1292. |
15 | Chen K H, Shi G L, Zhou X Y, et al. Highly efficient nitric oxide capture by azole-based ionic liquids through multiple-site absorption [J]. Angewandte Chemie-International Edition, 2016, 55(46): 14362-14366. |
16 | Sun Y, Ren S H, Hou Y C, et al. Absorption of nitric oxide in simulated flue gas by a metallic functional ionic liquid [J]. Fuel Processing Technology, 2018, 178: 7-12. |
17 | Zhang Q H, Vigier K D O, Royer S, et al. Deep eutectic solvents: syntheses, properties and applications [J]. Chemical Society Reviews, 2012, 41(21): 7108-7146. |
18 | Yang D Z, Han Y L, Qi H B, et al. Efficient absorption of SO2 by EmimCI-EG deep eutectic solvents [J]. ACS Sustainable Chemistry & Engineering, 2017, 5(8): 6382-6386. |
19 | Zubeir L F, Held C, Sadowski G, et al. PC-SAFT modeling of CO2 solubilities in deep eutectic solvents [J]. Journal of Physical Chemistry B, 2016, 120(9): 2300-2310. |
20 | Deng D S, Gao B, Zhang C, et al. Investigation of protic NH4SCN-based deep eutectic solvents as highly efficient and reversible NH3 absorbents [J]. Chemical Engineering Journal, 2019, 358: 936-943. |
21 | Duan E H, Guo B, Zhang D D, et al. Absorption of NO and NO2 in caprolactam tetrabutyl ammonium halide ionic liquids [J]. Journal of the Air & Waste Management Association, 2011, 61(12): 1393-1397. |
22 | Dou J X, Zhao Y Q, Yin F K, et al. Mechanistic study of selective absorption of NO in flue gas using EG-TBAB deep eutectic solvents [J]. Environmental Science & Technology, 2019, 53(2): 1031-1038. |
23 | Sun Y L, Wei G S, Tantai X W, et al. Highly efficient nitric oxide absorption by environmentally friendly deep eutectic solvents based on 1,3-dimethylthiourea [J]. Energy & Fuels, 2017, 31(11): 12439-12445. |
24 | Drago R S, Paulik F E. The reaction of nitrogen (Ⅱ) oxide with diethylamine [J]. Journal of the American Chemical Society, 1960, 82(1): 1819-1822. |
25 | Drago R S, Ragsdale R O, Eyman D P. A mechanism for the reaction of diethylamine with nitric oxide [J]. Journal of the American Chemical Society, 1961, 83(21): 4337-4339. |
26 | Hrabie J A, Keefer L K. Chemistry of the nitric oxide-releasing diazeniumdiolate (“nitrosohydroxylamine”) functional group and its oxygen-substituted derivatives [J]. Chemical Reviews, 2002, 102(4): 1135-1154. |
27 | Shang Y, Li H P, Zhang S J, et al. Guanidinium-based ionic liquids for sulfur dioxide sorption [J]. Chemical Engineering Journal, 2011, 175: 324-329. |
28 | Zhang L H, Ma H P, Wei G S, et al. Efficient and reversible nitric oxide absorption by low-viscosity, azole-derived deep eutectic solvents [J]. Journal of Chemical and Engineering Data, 2019, 64(7): 3068-3077. |
29 | Jiang B, Lin W R, Zhang L H, et al. 1,3-Dimethylurea tetrabutylphosphonium bromide ionic liquids for NO efficient and reversible capture [J]. Energy & Fuels, 2016, 30(1): 735-739. |
[1] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[2] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[3] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[4] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[5] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[6] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[7] | 陈宇豪, 陈晓平, 马吉亮, 梁财. 市政污泥回转窑焚烧气态污染物排放特性研究[J]. 化工学报, 2023, 74(5): 2170-2178. |
[8] | 李木金, 胡松, 施德磐, 赵鹏, 高瑞, 李进龙. 环氧丁烷尾气溶剂吸收及精制工艺[J]. 化工学报, 2023, 74(4): 1607-1618. |
[9] | 杨灿, 孙雪琦, 尚明华, 张建, 张香平, 曾少娟. 相变离子液体体系吸收分离CO2的研究现状及展望[J]. 化工学报, 2023, 74(4): 1419-1432. |
[10] | 何万媛, 陈一宇, 朱春英, 付涛涛, 高习群, 马友光. 阵列凸起微通道内气液两相传质特性研究[J]. 化工学报, 2023, 74(2): 690-697. |
[11] | 王煦清, 严圣林, 朱礼涛, 张希宝, 罗正鸿. 填料塔中有机胺吸收CO2气液传质的研究进展[J]. 化工学报, 2023, 74(1): 237-256. |
[12] | 王永倩, 王平, 程康, 毛晨林, 刘文锋, 尹智成, Ferrante Antonio. 氨气/甲烷贫预混旋转湍流火焰稳定性及NO生成[J]. 化工学报, 2022, 73(9): 4087-4094. |
[13] | 刘潜, 张香兰, 李志平, 李玉龙, 韩梦醒. 油酚分离过程低共熔溶剂的筛选及萃取性能研究[J]. 化工学报, 2022, 73(9): 3915-3928. |
[14] | 姜焱龙, 张妮, 李淡然, 朱冰冰, 蒋怡晨, 陈海军, 朱跃钊. 基于COSMO-RS方法筛选离子液体用于焦油脱除[J]. 化工学报, 2022, 73(4): 1704-1713. |
[15] | 张逸伟, 唐海荣, 何勇, 朱燕群, 王智化. 臭氧低温氧化烟气脱硝过程中的氮平衡试验研究[J]. 化工学报, 2022, 73(4): 1732-1742. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||