1 |
Cheng X B, Zhang R, Zhao C Z, et al. Toward safe lithium metal anode in rechargeable batteries: a review[J]. Chem. Rev., 2017, 117(15): 10403-10473.
|
2 |
Liu J, Bao Z, Cui Y, et al. Pathways for practical high-energy long-cycling lithium metal batteries[J]. Nat. Energy, 2019, 4(3): 180-186.
|
3 |
Liang Y, Zhao C Z, Yuan H, et al. A review of rechargeable batteries for portable electronic devices[J]. InfoMat, 2019, 1(1): 6-32.
|
4 |
Yang C, Chen J, Ji X, et al. Aqueous Li-ion battery enabled by halogen conversion-intercalation chemistry in graphite[J]. Nature, 2019, 569(7755): 245-250.
|
5 |
Zhang X Q, Chen X, Cheng X B, et al. Highly stable lithium metal batteries enabled by regulating the solvation of lithium ions in nonaqueous electrolytes[J]. Angew. Chem. Int. Ed., 2018, 57(19): 5301-5305.
|
6 |
Zhang X Q, Chen X, Xu R, et al. Columnar lithium metal anodes[J]. Angew. Chem. Int. Ed., 2017, 56(45): 14207-14211.
|
7 |
Zhang X Q, Zhao C Z, Huang J Q, et al. Recent advances in energy chemical engineering of next-generation lithium batteries[J]. Engineering, 2018, 4(6): 831-847.
|
8 |
Dai J, Yang C, Wang C, et al. Interface engineering for garnet-based solid-state lithium-metal batteries: materials, structures, and characterization[J]. Adv. Mater., 2018, 30: 1802068.
|
9 |
Wan J Y, Xie J, Kong X, et al. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries[J]. Nat. Nanotechnol., 2019, 14(7): 705-711.
|
10 |
Zhao Q, Liu X, Stalin S, et al. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries[J]. Nat. Energy, 2019, 4(5): 365-373.
|
11 |
Zhao C Z, Chen P Y, Zhang R, et al. An ion redistributor for dendrite-free lithium metal anodes[J]. Sci. Adv., 2018, 4(11): eaat3446.
|
12 |
Cheng X B, Zhao C Z, Yao Y X, et al. Recent advances in energy chemistry between solid-state electrolyte and safe lithium-metal anodes[J]. Chem, 2019, 5(1): 74-96.
|
13 |
Zhao Y, Ye Y, Wu F, et al. Anode interface engineering and architecture design for high-performance lithium-sulfur batteries[J]. Adv. Mater., 2019, 31(12): 1806532.
|
14 |
Yan C, Cheng X B, Yao Y X, et al. An armored mixed conductor interphase on a dendrite-free lithium-metal anode[J]. Adv. Mater., 2018, 30(45): 1804461.
|
15 |
Xu R, Cheng X B, Yan C, et al. Artificial interphases for highly stable lithium metal anode[J]. Matter, 2019, 1(2): 317-344.
|
16 |
Chen L, Fan X, Ji X, et al. High-energy Li metal battery with lithiated host[J]. Joule, 2019, 3(3): 732-744.
|
17 |
Ye H, Zheng Z J, Yao H R, et al. Guiding uniform Li plating/stripping through lithium-aluminum alloying medium for long-life Li metal batteries[J]. Angew. Chem. Int. Ed., 2019, 58(4): 1094-1099.
|
18 |
Li B Q, Chen X R, Chen X, et al. Favorable lithium nucleation on lithiophilic framework porphyrin for dendrite-free lithium metal anodes[J]. Research, 2019, 2019: 4608940.
|
19 |
Chen X, Chen X R, Hou T Z, et al. Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes[J]. Sci. Adv., 2019, 5(2): eaau7728.
|
20 |
Sun C, Li Y, Jin J, et al. ZnO nanoarray-modified nickel foam as a lithiophilic skeleton to regulate lithium deposition for lithium-metal batteries[J]. J. Mater. Chem. A, 2019, 7(13): 7752-7759.
|
21 |
Shen X, Cheng X B, Shi P, et al. Lithium-matrix composite anode protected by a solid electrolyte layer for stable lithium metal batteries[J]. J. Energy Chem., 2019, 37: 29-34.
|
22 |
Fan Y, Wang T, Legut D, et al. Theoretical investigation of lithium ions nucleation performance on metal-doped Cu surfaces[J]. J. Energy Chem., 2019, 39: 160-169.
|
23 |
Hong B, Fan H, Cheng X B, et al. Spatially uniform deposition of lithium metal in 3D Janus hosts[J]. Energy Storage Mater., 2019, 16: 259-266.
|
24 |
Wu H, Zhang Y, Deng Y, et al. A lightweight carbon nanofiber-based 3D structured matrix with high nitrogen-doping level for lithium metal anodes[J]. Sci. China Mater., 2019, 62(1): 87-94.
|
25 |
Chen X R, Zhang R, Cheng X B, et al. Dendrite-free carbon/lithium metal anodes for use in flexible lithium metal batteries[J]. New Carbon Mater., 2017, 32(6): 600-604.
|
26 |
Zhao C, Yu C, Li S, et al. Ultrahigh-capacity and long-life lithium-metal batteries enabled by engineering carbon nanofiber-stabilized graphene aerogel film host[J]. Small, 2018, 14(42): 1803310.
|
27 |
Zhao C, Wang Z, Tan X, et al. Implanting CNT forest onto carbon nanosheets as multifunctional hosts for high-performance lithium metal batteries[J]. Small Methods, 2019, 3(5): 1800546.
|
28 |
Duan H, Zhang J, Chen X, et al. Uniform nucleation of lithium in 3D current collectors via bromide intermediates for stable cycling lithium metal batteries[J]. J. Am. Chem. Soc., 2018, 140(51): 18051-18057.
|
29 |
Xu B Q, Zhai H W, Liao X B, et al. Porous insulating matrix for lithium metal anode with long cycling stability and high power[J]. Energy Storage Mater., 2019, 17: 31-37.
|
30 |
Cheng X B, Hou T Z, Zhang R, et al. Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries[J]. Adv. Mater., 2016, 28(15): 2888-2895.
|
31 |
Xu X, Wang S, Wang H, et al. Recent progresses in the suppression method based on the growth mechanism of lithium dendrite[J]. J. Energy Chem., 2018, 27(2): 513-527.
|
32 |
Niu C, Pan H, Xu W, et al. Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions[J]. Nat. Nanotechnol., 2019, 14(6): 594-601.
|
33 |
Zhang R, Chen X, Shen X, et al. Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries[J]. Joule, 2018, 2(4): 764-777.
|
34 |
Shi P, Li T, Zhang R, et al. Lithiophilic LiC6 layers on carbon hosts enabling stable Li metal anode in working batteries[J]. Adv. Mater., 2019, 31(8): 1807131.
|
35 |
Niu C, Lee H, Chen S, et al. High-energy lithium metal pouch cells with limited anode swelling and long stable cycles[J]. Nat. Energy, 2019, 4(7): 551-559.
|
36 |
Cheng X B, Zhang Q. Growth mechanisms and suppression strategies of lithium metal dendrites[J]. Prog. Chem., 2018, 30(1): 51-72.
|
37 |
Kong L, Zhang Q. Three-dimensional matrix for lithium metal anode for next-generation rechargeable batteries: structure design and interface engineering[J]. J. Energy Chem., 2019, 33: 167-168.
|
38 |
Ni S, Tan S, An Q, et al. Three dimensional porous frameworks for lithium dendrite suppression[J]. J. Energy Chem., 2020, 44: 73-89.
|
39 |
Liu H, Cheng X B, Jin Z H, et al. Recent advances in understanding dendrite growth on alkali metal anodes[J]. EnergyChem, 2019, 1(1): 100003.
|
40 |
宋刘斌, 黎安娴, 肖忠良, 等. 第一性原理在锂离子电池电极材料中的应用研究[J]. 化工学报, 2019, 70(6): 2051-2059.
|
|
Song L B, Li A X, Xiao Z L, et al. Application research status of first-principles in lithium-ion battery electrode materials[J]. CIESC Journal, 2019, 70(6): 2051-2059.
|
41 |
Guyer J E, Boettinger W J, Warren J A, et al. Phase field modeling of electrochemistry(Ⅱ): Kinetics[J]. Phys. Rev. E, 2004, 69(2): 021604.
|
42 |
Guyer J E, Boettinger W J, Warren J A, et al. Phase field modeling of electrochemistry(Ⅰ): Equilibrium[J]. Phys. Rev. E, 2004, 69(2): 021603.
|
43 |
Zhang R, Shen X, Cheng X B, et al. The dendrite growth in 3D structured lithium metal anodes: electron or ion transfer limitation?[J]. Energy Storage Mater., 2019, 23: 556-565.
|
44 |
Chen L, Zhang H W, Liang L Y, et al. Modulation of dendritic patterns during electrodeposition: a nonlinear phase-field model[J]. J. Power Sources, 2015, 300: 376-385.
|
45 |
Tian H K, Liu Z, Ji Y Z, et al. Interfacial electronic properties dictate Li dendrite growth in solid electrolytes[J]. Chem. Mater., 2019, 31(18): 7351-7359.
|
46 |
Foroozan T, Soto F A, Yurkiv V, et al. Synergistic effect of graphene oxide for impeding the dendritic plating of Li[J]. Adv. Funct. Mater., 2018: 28(15): 1705917.1-1705917.13.
|
47 |
Smith R B, Bazant M Z. Multiphase porous electrode theory[J]. J. Electrochem. Soc., 2017, 164(11): E3291-E3310.
|
48 |
Liang L, Qi Y, Xue F, et al. Nonlinear phase-field model for electrode-electrolyte interface evolution[J]. Phys. Rev. E, 2012, 86(5): 051609.
|