化工学报 ›› 2020, Vol. 71 ›› Issue (6): 2688-2695.DOI: 10.11949/0438-1157.20200120
收稿日期:
2020-02-07
修回日期:
2020-04-01
出版日期:
2020-06-05
发布日期:
2020-06-05
通讯作者:
张强
作者简介:
张睿(1993—),男,博士研究生,基金资助:
Rui ZHANG(),Xin SHEN,Jinfu WANG,Qiang ZHANG(
)
Received:
2020-02-07
Revised:
2020-04-01
Online:
2020-06-05
Published:
2020-06-05
Contact:
Qiang ZHANG
摘要:
锂金属具有极高的理论比容量和极低的氧化还原电极电势,成为了新一代高比能二次电池最理想的负极材料。然而,锂金属负极其走向大规模应用仍存在诸多问题与挑战。三维骨架复合负极可以控制金属锂均匀形核,低电流密度下均匀沉积,有望推动锂金属负极的实用化。为了更高效地指导锂金属负极设计和优化,采用相场理论,对三维骨架锂金属负极中比表面积对金属锂沉积过程的作用机制进行了定量分析和探究,发现了比表面积调控金属锂沉积的两阶段作用机理,并提出了基于比表面积参数的三维骨架负极设计与优化方向,从而最大程度发挥三维骨架在调控稳定金属锂负极上的积极作用。
中图分类号:
张睿, 沈馨, 王金福, 张强. 锂离子在三维骨架复合锂金属负极中的沉积规律[J]. 化工学报, 2020, 71(6): 2688-2695.
Rui ZHANG, Xin SHEN, Jinfu WANG, Qiang ZHANG. Plating of Li ions in 3D structured lithium metal anodes[J]. CIESC Journal, 2020, 71(6): 2688-2695.
参数符号 | 参数名称 | 值 | 单位 |
---|---|---|---|
Lσ | 界面迁移系数 | 1.0×10-8 | m3·J-1·s-1 |
Lη | 电化学反应系数 | 0.2 | s-1 |
κ0 | 相场梯度能量系数 | 5.0×10-5 | J·m-1 |
δ | 各向异性系数 | 0.03 | 无量纲 |
α | 电荷转移系数 | 0.5 | 无量纲 |
c0 | 电解液体相锂离子浓度 | 1.0×103 | mol·m-3 |
cs | 锂金属锂原子浓度 | 7.69×104 | mol·m-3 |
W | 固液相平衡势垒 | 1.2×107 | J·m-3 |
D+l | 电解液相扩散系数 | 6.0×10-12 | m2·s-1 |
D+s | 金属锂相扩散系数 | 1.0×10-15 | m2·s-1 |
σl | 电解液相电导率 | 1.0 | S·m-1 |
σs | 金属锂相电导率 | 1.0×107 | S·m-1 |
φs0 | 电化学反应固相电势 | -0.1 | V |
表1 相场模型计算参数
Table 1 Parameters in phase field model
参数符号 | 参数名称 | 值 | 单位 |
---|---|---|---|
Lσ | 界面迁移系数 | 1.0×10-8 | m3·J-1·s-1 |
Lη | 电化学反应系数 | 0.2 | s-1 |
κ0 | 相场梯度能量系数 | 5.0×10-5 | J·m-1 |
δ | 各向异性系数 | 0.03 | 无量纲 |
α | 电荷转移系数 | 0.5 | 无量纲 |
c0 | 电解液体相锂离子浓度 | 1.0×103 | mol·m-3 |
cs | 锂金属锂原子浓度 | 7.69×104 | mol·m-3 |
W | 固液相平衡势垒 | 1.2×107 | J·m-3 |
D+l | 电解液相扩散系数 | 6.0×10-12 | m2·s-1 |
D+s | 金属锂相扩散系数 | 1.0×10-15 | m2·s-1 |
σl | 电解液相电导率 | 1.0 | S·m-1 |
σs | 金属锂相电导率 | 1.0×107 | S·m-1 |
φs0 | 电化学反应固相电势 | -0.1 | V |
1 | Cheng X B, Zhang R, Zhao C Z, et al. Toward safe lithium metal anode in rechargeable batteries: a review[J]. Chem. Rev., 2017, 117(15): 10403-10473. |
2 | Liu J, Bao Z, Cui Y, et al. Pathways for practical high-energy long-cycling lithium metal batteries[J]. Nat. Energy, 2019, 4(3): 180-186. |
3 | Liang Y, Zhao C Z, Yuan H, et al. A review of rechargeable batteries for portable electronic devices[J]. InfoMat, 2019, 1(1): 6-32. |
4 | Yang C, Chen J, Ji X, et al. Aqueous Li-ion battery enabled by halogen conversion-intercalation chemistry in graphite[J]. Nature, 2019, 569(7755): 245-250. |
5 | Zhang X Q, Chen X, Cheng X B, et al. Highly stable lithium metal batteries enabled by regulating the solvation of lithium ions in nonaqueous electrolytes[J]. Angew. Chem. Int. Ed., 2018, 57(19): 5301-5305. |
6 | Zhang X Q, Chen X, Xu R, et al. Columnar lithium metal anodes[J]. Angew. Chem. Int. Ed., 2017, 56(45): 14207-14211. |
7 | Zhang X Q, Zhao C Z, Huang J Q, et al. Recent advances in energy chemical engineering of next-generation lithium batteries[J]. Engineering, 2018, 4(6): 831-847. |
8 | Dai J, Yang C, Wang C, et al. Interface engineering for garnet-based solid-state lithium-metal batteries: materials, structures, and characterization[J]. Adv. Mater., 2018, 30: 1802068. |
9 | Wan J Y, Xie J, Kong X, et al. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries[J]. Nat. Nanotechnol., 2019, 14(7): 705-711. |
10 | Zhao Q, Liu X, Stalin S, et al. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries[J]. Nat. Energy, 2019, 4(5): 365-373. |
11 | Zhao C Z, Chen P Y, Zhang R, et al. An ion redistributor for dendrite-free lithium metal anodes[J]. Sci. Adv., 2018, 4(11): eaat3446. |
12 | Cheng X B, Zhao C Z, Yao Y X, et al. Recent advances in energy chemistry between solid-state electrolyte and safe lithium-metal anodes[J]. Chem, 2019, 5(1): 74-96. |
13 | Zhao Y, Ye Y, Wu F, et al. Anode interface engineering and architecture design for high-performance lithium-sulfur batteries[J]. Adv. Mater., 2019, 31(12): 1806532. |
14 | Yan C, Cheng X B, Yao Y X, et al. An armored mixed conductor interphase on a dendrite-free lithium-metal anode[J]. Adv. Mater., 2018, 30(45): 1804461. |
15 | Xu R, Cheng X B, Yan C, et al. Artificial interphases for highly stable lithium metal anode[J]. Matter, 2019, 1(2): 317-344. |
16 | Chen L, Fan X, Ji X, et al. High-energy Li metal battery with lithiated host[J]. Joule, 2019, 3(3): 732-744. |
17 | Ye H, Zheng Z J, Yao H R, et al. Guiding uniform Li plating/stripping through lithium-aluminum alloying medium for long-life Li metal batteries[J]. Angew. Chem. Int. Ed., 2019, 58(4): 1094-1099. |
18 | Li B Q, Chen X R, Chen X, et al. Favorable lithium nucleation on lithiophilic framework porphyrin for dendrite-free lithium metal anodes[J]. Research, 2019, 2019: 4608940. |
19 | Chen X, Chen X R, Hou T Z, et al. Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes[J]. Sci. Adv., 2019, 5(2): eaau7728. |
20 | Sun C, Li Y, Jin J, et al. ZnO nanoarray-modified nickel foam as a lithiophilic skeleton to regulate lithium deposition for lithium-metal batteries[J]. J. Mater. Chem. A, 2019, 7(13): 7752-7759. |
21 | Shen X, Cheng X B, Shi P, et al. Lithium-matrix composite anode protected by a solid electrolyte layer for stable lithium metal batteries[J]. J. Energy Chem., 2019, 37: 29-34. |
22 | Fan Y, Wang T, Legut D, et al. Theoretical investigation of lithium ions nucleation performance on metal-doped Cu surfaces[J]. J. Energy Chem., 2019, 39: 160-169. |
23 | Hong B, Fan H, Cheng X B, et al. Spatially uniform deposition of lithium metal in 3D Janus hosts[J]. Energy Storage Mater., 2019, 16: 259-266. |
24 | Wu H, Zhang Y, Deng Y, et al. A lightweight carbon nanofiber-based 3D structured matrix with high nitrogen-doping level for lithium metal anodes[J]. Sci. China Mater., 2019, 62(1): 87-94. |
25 | Chen X R, Zhang R, Cheng X B, et al. Dendrite-free carbon/lithium metal anodes for use in flexible lithium metal batteries[J]. New Carbon Mater., 2017, 32(6): 600-604. |
26 | Zhao C, Yu C, Li S, et al. Ultrahigh-capacity and long-life lithium-metal batteries enabled by engineering carbon nanofiber-stabilized graphene aerogel film host[J]. Small, 2018, 14(42): 1803310. |
27 | Zhao C, Wang Z, Tan X, et al. Implanting CNT forest onto carbon nanosheets as multifunctional hosts for high-performance lithium metal batteries[J]. Small Methods, 2019, 3(5): 1800546. |
28 | Duan H, Zhang J, Chen X, et al. Uniform nucleation of lithium in 3D current collectors via bromide intermediates for stable cycling lithium metal batteries[J]. J. Am. Chem. Soc., 2018, 140(51): 18051-18057. |
29 | Xu B Q, Zhai H W, Liao X B, et al. Porous insulating matrix for lithium metal anode with long cycling stability and high power[J]. Energy Storage Mater., 2019, 17: 31-37. |
30 | Cheng X B, Hou T Z, Zhang R, et al. Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries[J]. Adv. Mater., 2016, 28(15): 2888-2895. |
31 | Xu X, Wang S, Wang H, et al. Recent progresses in the suppression method based on the growth mechanism of lithium dendrite[J]. J. Energy Chem., 2018, 27(2): 513-527. |
32 | Niu C, Pan H, Xu W, et al. Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions[J]. Nat. Nanotechnol., 2019, 14(6): 594-601. |
33 | Zhang R, Chen X, Shen X, et al. Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries[J]. Joule, 2018, 2(4): 764-777. |
34 | Shi P, Li T, Zhang R, et al. Lithiophilic LiC6 layers on carbon hosts enabling stable Li metal anode in working batteries[J]. Adv. Mater., 2019, 31(8): 1807131. |
35 | Niu C, Lee H, Chen S, et al. High-energy lithium metal pouch cells with limited anode swelling and long stable cycles[J]. Nat. Energy, 2019, 4(7): 551-559. |
36 | Cheng X B, Zhang Q. Growth mechanisms and suppression strategies of lithium metal dendrites[J]. Prog. Chem., 2018, 30(1): 51-72. |
37 | Kong L, Zhang Q. Three-dimensional matrix for lithium metal anode for next-generation rechargeable batteries: structure design and interface engineering[J]. J. Energy Chem., 2019, 33: 167-168. |
38 | Ni S, Tan S, An Q, et al. Three dimensional porous frameworks for lithium dendrite suppression[J]. J. Energy Chem., 2020, 44: 73-89. |
39 | Liu H, Cheng X B, Jin Z H, et al. Recent advances in understanding dendrite growth on alkali metal anodes[J]. EnergyChem, 2019, 1(1): 100003. |
40 | 宋刘斌, 黎安娴, 肖忠良, 等. 第一性原理在锂离子电池电极材料中的应用研究[J]. 化工学报, 2019, 70(6): 2051-2059. |
Song L B, Li A X, Xiao Z L, et al. Application research status of first-principles in lithium-ion battery electrode materials[J]. CIESC Journal, 2019, 70(6): 2051-2059. | |
41 | Guyer J E, Boettinger W J, Warren J A, et al. Phase field modeling of electrochemistry(Ⅱ): Kinetics[J]. Phys. Rev. E, 2004, 69(2): 021604. |
42 | Guyer J E, Boettinger W J, Warren J A, et al. Phase field modeling of electrochemistry(Ⅰ): Equilibrium[J]. Phys. Rev. E, 2004, 69(2): 021603. |
43 | Zhang R, Shen X, Cheng X B, et al. The dendrite growth in 3D structured lithium metal anodes: electron or ion transfer limitation?[J]. Energy Storage Mater., 2019, 23: 556-565. |
44 | Chen L, Zhang H W, Liang L Y, et al. Modulation of dendritic patterns during electrodeposition: a nonlinear phase-field model[J]. J. Power Sources, 2015, 300: 376-385. |
45 | Tian H K, Liu Z, Ji Y Z, et al. Interfacial electronic properties dictate Li dendrite growth in solid electrolytes[J]. Chem. Mater., 2019, 31(18): 7351-7359. |
46 | Foroozan T, Soto F A, Yurkiv V, et al. Synergistic effect of graphene oxide for impeding the dendritic plating of Li[J]. Adv. Funct. Mater., 2018: 28(15): 1705917.1-1705917.13. |
47 | Smith R B, Bazant M Z. Multiphase porous electrode theory[J]. J. Electrochem. Soc., 2017, 164(11): E3291-E3310. |
48 | Liang L, Qi Y, Xue F, et al. Nonlinear phase-field model for electrode-electrolyte interface evolution[J]. Phys. Rev. E, 2012, 86(5): 051609. |
[1] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[2] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[3] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[4] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[5] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[6] | 邢美波, 张中天, 景栋梁, 张洪发. 磁调控水基碳纳米管协同多孔材料强化相变储/释能特性[J]. 化工学报, 2023, 74(7): 3093-3102. |
[7] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[8] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[9] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[10] | 屈园浩, 邓文义, 谢晓丹, 苏亚欣. 活性炭/石墨辅助污泥电渗脱水研究[J]. 化工学报, 2023, 74(7): 3038-3050. |
[11] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
[12] | 董茂林, 陈李栋, 黄六莲, 吴伟兵, 戴红旗, 卞辉洋. 酸性助水溶剂制备木质纳米纤维素及功能应用研究进展[J]. 化工学报, 2023, 74(6): 2281-2295. |
[13] | 陈朝光, 贾玉香, 汪锰. 以低浓度废酸驱动中和渗析脱盐的模拟与验证[J]. 化工学报, 2023, 74(6): 2486-2494. |
[14] | 杨琴, 秦传鉴, 李明梓, 杨文晶, 赵卫杰, 刘虎. 用于柔性传感的双形状记忆MXene基水凝胶的制备及性能研究[J]. 化工学报, 2023, 74(6): 2699-2707. |
[15] | 刘远超, 蒋旭浩, 邵钶, 徐一帆, 钟建斌, 李耑. 几何尺寸及缺陷对石墨炔纳米带热输运特性的影响[J]. 化工学报, 2023, 74(6): 2708-2716. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 742
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 617
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||