化工学报 ›› 2020, Vol. 71 ›› Issue (6): 2678-2687.DOI: 10.11949/0438-1157.20200237
收稿日期:
2020-03-09
修回日期:
2020-03-31
出版日期:
2020-06-05
发布日期:
2020-06-05
通讯作者:
赵锁奇
作者简介:
代晓玉(1994—),女,博士研究生,
Xiaoyu DAI(),Yuan en MA,Zhiming XU,Linzhou ZHANG,Suoqi ZHAO(
),Chunming XU
Received:
2020-03-09
Revised:
2020-03-31
Online:
2020-06-05
Published:
2020-06-05
Contact:
Suoqi ZHAO
摘要:
以SLO-LH、SLO-SH和SLO-YN催化裂化油浆为原料,利用热缩聚法制备中间相沥青,系统分析了油浆的烃组成分布、沸点分布以及核磁结构特征,关联了中间相沥青光学织构与原料性质组成关系。结果表明,SLO-SH和SLO-YN油浆中的分子量和组成分布较窄,在给定反应条件(430℃、0.7 MPa)下制备中间相沥青的光学织构指数(OTI)值分别为45和50,中间相织构主要由大面积的域及流域组成,镶嵌结构较少。相对于SLO-SH与SLO-YN,SLO-LH样品的烃组成与沸点分布明显疏散,得到的中间相主要由镶嵌组织与小域构成。结果表明集中分布且芳烃含量高有利于得到高收率与高OTI值的优质中间相沥青,对油浆组分进行分离是制备高品质中间相沥青和针状焦的必要途径。
中图分类号:
代晓玉, 马远恩, 许志明, 张霖宙, 赵锁奇, 徐春明. 催化裂化油浆组成分布对中间相沥青光学织构的影响[J]. 化工学报, 2020, 71(6): 2678-2687.
Xiaoyu DAI, Yuan en MA, Zhiming XU, Linzhou ZHANG, Suoqi ZHAO, Chunming XU. Effects of composition distribution of catalytic slurry oils on optical texture of mesophase pitch[J]. CIESC Journal, 2020, 71(6): 2678-2687.
Properties | SLO-LH | SLO-YN | SLO-SH |
---|---|---|---|
carbon residue/%(mass) | 8.16 | 10.83 | 16.08 |
ash/%(mass) | 0.16 | 0.23 | 0.32 |
density/(cm3/g) | 0.99 | 1.07 | 1.09 |
SARA/%(mass) | |||
saturate | 31.29 | 14.41 | 14.64 |
aromatic | 45.49 | 71.78 | 59.39 |
resin | 17.85 | 9.54 | 16.17 |
asphaltene | 1.16 | 1.55 | 2.69 |
element/%(mass) | |||
C | 88.97 | 91.56 | 91.17 |
H | 10.67 | 7.89 | 7.81 |
O | 0.59 | 0.40 | 0.45 |
N | 0.33 | 0.15 | 0.48 |
S | 0.30 | 0.71 | 0.51 |
metal content/(μg/g) | |||
Ni | 5.20 | 2.40 | 11.30 |
V | <0.1 | 4.60 | 0.60 |
Al | 76.00 | 279.00 | 638.00 |
Ca | 3.10 | 3.30 | 12.60 |
Fe | 14.30 | 6.80 | 34.50 |
Na | 4.50 | 2.40 | 52.10 |
表1 催化油浆的基本性质
Table 1 Basic properties of three slurry oils
Properties | SLO-LH | SLO-YN | SLO-SH |
---|---|---|---|
carbon residue/%(mass) | 8.16 | 10.83 | 16.08 |
ash/%(mass) | 0.16 | 0.23 | 0.32 |
density/(cm3/g) | 0.99 | 1.07 | 1.09 |
SARA/%(mass) | |||
saturate | 31.29 | 14.41 | 14.64 |
aromatic | 45.49 | 71.78 | 59.39 |
resin | 17.85 | 9.54 | 16.17 |
asphaltene | 1.16 | 1.55 | 2.69 |
element/%(mass) | |||
C | 88.97 | 91.56 | 91.17 |
H | 10.67 | 7.89 | 7.81 |
O | 0.59 | 0.40 | 0.45 |
N | 0.33 | 0.15 | 0.48 |
S | 0.30 | 0.71 | 0.51 |
metal content/(μg/g) | |||
Ni | 5.20 | 2.40 | 11.30 |
V | <0.1 | 4.60 | 0.60 |
Al | 76.00 | 279.00 | 638.00 |
Ca | 3.10 | 3.30 | 12.60 |
Fe | 14.30 | 6.80 | 34.50 |
Na | 4.50 | 2.40 | 52.10 |
Type | Size/shape | Index(OTI) |
---|---|---|
mosaic | <10 μm | 1 |
small domain | 10—60 μm | 5 |
domain | >60 μm | 50 |
flow domain | >60 μm long,>10 μm wide | 100 |
表2 中间相沥青及针状焦微观织构类型的命名与光学织构指数
Table 2 Nomenclature and optical texture index of microstructure types of mesophase asphalt and needle coke
Type | Size/shape | Index(OTI) |
---|---|---|
mosaic | <10 μm | 1 |
small domain | 10—60 μm | 5 |
domain | >60 μm | 50 |
flow domain | >60 μm long,>10 μm wide | 100 |
Sample | Mn | Mw | Dispersion coefficient |
---|---|---|---|
SLO-LH | 574 | 2188.66 | 3.81 |
SLO-YN | 263 | 333.74 | 1.27 |
SLO-SH | 276 | 384.22 | 1.39 |
表3 油浆的分子量数据
Table 3 Molecular weight of catalytic slurry
Sample | Mn | Mw | Dispersion coefficient |
---|---|---|---|
SLO-LH | 574 | 2188.66 | 3.81 |
SLO-YN | 263 | 333.74 | 1.27 |
SLO-SH | 276 | 384.22 | 1.39 |
Sample | ha | hα | hβ | hγ | fA | HAU/CA | CT | HT | σ |
---|---|---|---|---|---|---|---|---|---|
SLO-LH | 0.10 | 0.12 | 0.65 | 0.13 | 0.35 | 0.65 | 42.52 | 60.76 | 0.36 |
SLO-YN | 0.31 | 0.31 | 0.30 | 0.08 | 0.64 | 0.75 | 20.05 | 20.59 | 0.33 |
SLO-SH | 0.31 | 0.28 | 0.33 | 0.08 | 0.64 | 0.72 | 20.95 | 21.39 | 0.31 |
Sample | CA | RT | RA | RN | CN | CS | CP | L | n |
SLO-LH | 15.06 | 5.61 | 3.27 | 2.34 | 9.37 | 27.46 | 18.09 | 6.69 | 0.77 |
SLO-YN | 12.89 | 4.31 | 2.72 | 1.59 | 6.37 | 7.17 | 0.79 | 1.39 | 1.06 |
SLO-SH | 13.50 | 4.51 | 2.87 | 1.63 | 6.54 | 7.45 | 0.92 | 1.58 | 0.97 |
表4 3种催化油浆的1H NMR的分析结果
Table 4 1H NMR data of three kinds of slurry oil
Sample | ha | hα | hβ | hγ | fA | HAU/CA | CT | HT | σ |
---|---|---|---|---|---|---|---|---|---|
SLO-LH | 0.10 | 0.12 | 0.65 | 0.13 | 0.35 | 0.65 | 42.52 | 60.76 | 0.36 |
SLO-YN | 0.31 | 0.31 | 0.30 | 0.08 | 0.64 | 0.75 | 20.05 | 20.59 | 0.33 |
SLO-SH | 0.31 | 0.28 | 0.33 | 0.08 | 0.64 | 0.72 | 20.95 | 21.39 | 0.31 |
Sample | CA | RT | RA | RN | CN | CS | CP | L | n |
SLO-LH | 15.06 | 5.61 | 3.27 | 2.34 | 9.37 | 27.46 | 18.09 | 6.69 | 0.77 |
SLO-YN | 12.89 | 4.31 | 2.72 | 1.59 | 6.37 | 7.17 | 0.79 | 1.39 | 1.06 |
SLO-SH | 13.50 | 4.51 | 2.87 | 1.63 | 6.54 | 7.45 | 0.92 | 1.58 | 0.97 |
1 | 史权, 张立. 催化裂化油浆及其窄馏分芳烃组成分析 [J]. 石油学报, 2000, 16(2): 90-94. |
Shi Q, Zhang L. Analysis of aromatic types in FCC slurry oils and their separated narrow fractions [J]. Acta Petrolei Sinica(Petroleum Processing Section), 2000, 16 (2): 90-94. | |
2 | Song X, Liu D, Lou B, et al. Removal of catalyst particles from fluid catalytic cracking slurry oil by the simultaneous addition of a flocculants and a weighting agent[J]. Chemical Engineering Research and Design, 2018, 132: 686-696. |
3 | Wang G, Eser S. Molecular composition of the high-boiling components of needle coke feedstocks and mesophase development[J]. Energy & Fuels, 2007, 21(6): 3563-3572. |
4 | Lin C, Wang J, Chen S, et al. Thermal treatment of fluid catalytic cracking slurry oil: determination of the thermal stability and its correlation with the quality of derived cokes[J]. Journal of Analytical and Applied Pyrolysis, 2018, 135: 406-414. |
5 | Mochida I, Nakamo S, Oyama T, et al. Puffing and CTE of carbon rods prepared from hydrodesulfurized petroleum needle coke[J]. Carbon, 1988, 26(5): 751-754. |
6 | Wincek R T, Abrahamson J P, Eser S. Hydrodesulfurization of fluid catalytic cracking decant oils in a laboratory flow reactor and effect of hydrodesulfurization on subsequent coking[J]. Energy & Fuels, 2016, 30(8): 6281-6289. |
7 | Eser S, Wang G. A laboratory study of a pretreatment approach to accommodate high-sulfur FCC decant oils as feedstocks for commercial needle coke[J]. Energy & Fuels, 2007, 21(6): 3573-3582. |
8 | Filley R M, Eser S. Analysis of hydrocarbons and sulfur compounds in two FCC decant oils and their carbonization products[J]. Energy & Fuels, 1997, 11(3): 623-630. |
9 | Zhao S, Sparks B D, Kotlyar L S, et al. Reactivity of sulphur species in bitumen pitch and residua during fluid coking and hydrocracking[J]. Petroleum Science and Technology, 2002, 20(9/10): 1071-1085. |
10 | Taylor G H, Pennock G M, Gerald J D F, et al. Influence of QI on mesophase structure[J]. Carbon, 1993, 31(2): 341-354. |
11 | Eser S, Jenkins R G. Carbonization of petroleum feedstocks(Ⅱ): Chemical constitution of feedstock asphaltenes and mesophase development[J]. Carbon, 1989, 27(6): 889-897. |
12 | Zhu Y, Zhao C, Xu Y, et al. Preparation and characterization of coal pitch-based needle coke (I): The effects of aromatic index (fa) in refined coal pitch[J]. Energy & Fuels, 2019, 33(4): 3456-3464. |
13 | 刘春林, 凌立成, 刘朗, 等. 大港常压渣油超临界萃取馏分制备中间相沥青的研究[J]. 石油学报(石油加工), 2002, 18(2): 54-58. |
Liu C L, Ling L C, Liu L, et al. Mesophase pitch prepared by supercritical fluid extraction from Dagang petroleum residue [J]. Acta Petrolei Sinica(Petroleum Processing Section), 2002, 18(2): 54-58. | |
14 | Martı́nez-Escandell M, Torregrosa P, Marsh H, et al. Pyrolysis of petroleum residues(I): Yields and product analyses[J]. Carbon, 1999, 37(10): 1567-1582. |
15 | Fleurot O, Edie D. Steady and transient rheological behavior of mesophase pitches[J]. Journal of Rheology, 1998, 42: 781-793. |
16 | Khandare P M, Zondlo J W, Stansberry P B, et al. Rheological investigations of pitch material(Ⅱ): Viscosity measurement of A240 and ARA-24 pitches using a high-temperature high-pressure rheometer[J]. Carbon, 2000, 38(6): 889-897. |
17 | Ramjee S, Rand B, Focke W W. Low shear rheological behaviour of two-phase mesophase pitch[J]. Carbon, 2015, 82: 368-380. |
18 | Weishauptová Z, Medek J, Rada M. Relation between texture and rheological properties of mesophase pitch[J]. Fuel, 1994, 73(2): 177-182. |
19 | Eser S, Wang G, Clemons J. constitution Molecular, reactivity carbonization, and mesophase development from FCC decant oil and its derivatives[M]// Heavy Hydrocarbon Resources. Washington, DC: American Chemical Society, 2005: 95-111. |
20 | Mochida I, Korai Y, Fujitsu H, et al. Evaluation of several petroleum residues as the needle coke feedstock using a tube bomb[J]. Carbon, 1987, 25(2): 259-264. |
21 | Yuan G, Jin Z, Zuo X, et al. Effect of carbonaceous precursors on the structure of mesophase pitches and their derived cokes[J]. Energy & Fuels, 2018, 32(8): 8329-8339. |
22 | Mochida I, Qing F Y, Korai Y, et al. Carbonization in the tube bomb leading to needle coke (Ⅲ): Carbonization properties of several coal-tar pitches[J]. Carbon, 1989, 27(3): 375-380. |
23 | Kakuta M, Tanaka H, Sato J, et al. A new calcining technology for manufacturing of coke with lower thermal expansion coefficient [J]. Carbon, 1981, 19(5): 347-352. |
24 | Eser S, Jenkins R G. Carbonization of petroleum feedstocks (Ⅰ): Relationships between chemical constitution of the feedstocks and mesophase development[J]. Carbon, 1989, 27(6): 877-887. |
25 | Tekinalp H L, Cervo E G, Fathollahi B, et al. The effect of molecular composition and structure on the development of porosity in pitch-based activated carbon fibers[J]. Carbon, 2013, 52: 267-277. |
26 | 丁宗禹. 扩大针状焦的原料[J]. 石油炼制与化工, 1988, (9): 30-35. |
Ding Z Y. Extending the feedstocks for needle coke production[J]. Petroleum Processing and Petrochemicals, 1988, (9): 30-35. | |
27 | Sanada Y, Furuta T, Kimura H, et al. Formation of anisotropic mesophase from various carbonaceous materials in early stages of carbonization [J]. Fuel, 1973, 52(2): 143-148. |
28 | Ragan S, Marsh H. Carbonization and liquid-crystal (mesophase) development(22): Micro-strength and optical textures of cokes from coal-pitch co-carbonizations[J]. Fuel, 1981, 60(6): 522-528. |
29 | 杜勇, 刘春法, 单长春, 等. 针状焦偏光显微分析方法及影响因素探讨[J]. 炭素技术, 2007, (6): 6-8. |
Du Y, Liu C F, Shan C C, et al. Microstructure of needle coke by polarized light microscope and discussion on affecting factors [J]. Carbon Technology, 2007, (6): 6-8. | |
30 | Zhang D, Zhang L, Fang X, et al. Enhancement of mesocarbon microbead (MCMB) preparation through supercritical fluid extraction and fractionation[J]. Fuel, 2019, 237: 753-762. |
31 | 李春霞, 徐泽进, 乔曼, 等. 催化裂化油浆超临界萃取组分热缩聚生成中间相沥青的定量研究 [J]. 石油学报(石油加工), 2015, (1): 145-152. |
Li C X, Xu Z J, Qiao M, et al. Quantitative analysis of mesophase development upon heating of the supercritical fluid extraction of FCC slurry [J]. Acta Petrolei Sinica(Petroleum Processing Section), 2015, (1): 145-152. | |
32 | Wang G. Molecular composition of needle coke feedstocks and mesophase development during carbonization [D]. The Pennsylvania State: The Pennsylvania State University, 2005. |
33 | Zhang D, Zhang L, Yu Y, et al. Mesocarbon microbead production from fluid catalytic cracking slurry oil: improving performance through supercritical fluid extraction [J]. Energy & Fuels, 2018, 32(12): 12477-12485. |
34 | Mochida I, Korai Y, Oyama T. Semi-quantitative correlation between optical anisotropy and CTE of needle-like coke grains[J]. Carbon, 1987, 25(2): 273-278. |
[1] | 连梦雅, 谈莹莹, 王林, 陈枫, 曹艺飞. 地下水预热新风一体化热泵空调系统制热性能研究[J]. 化工学报, 2023, 74(S1): 311-319. |
[2] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[3] | 赵亚欣, 张雪芹, 王荣柱, 孙国, 姚善泾, 林东强. 流穿模式离子交换层析去除单抗聚集体[J]. 化工学报, 2023, 74(9): 3879-3887. |
[4] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[5] | 王浩, 王振雷. 基于自适应谱方法的裂解炉烧焦模型化简策略[J]. 化工学报, 2023, 74(9): 3855-3864. |
[6] | 刘爽, 张霖宙, 许志明, 赵锁奇. 渣油及其组分黏度的分子层次组成关联研究[J]. 化工学报, 2023, 74(8): 3226-3241. |
[7] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[8] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[9] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[10] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[11] | 张缘良, 栾昕奇, 苏伟格, 李畅浩, 赵钟兴, 周利琴, 陈健民, 黄艳, 赵祯霞. 离子液体复合萃取剂选择性萃取尼古丁的研究及DFT计算[J]. 化工学报, 2023, 74(7): 2947-2956. |
[12] | 高金明, 郭玉娇, 鄂承林, 卢春喜. 一种封闭罩内顺流多旋臂气液分离器的分离特性研究[J]. 化工学报, 2023, 74(7): 2957-2966. |
[13] | 刘春雨, 周桓宇, 马跃, 岳长涛. CaO调质含油污泥干燥特性及数学模型[J]. 化工学报, 2023, 74(7): 3018-3027. |
[14] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[15] | 邵伟明, 韩文学, 宋伟, 杨勇, 陈灿, 赵东亚. 基于分布式贝叶斯隐马尔可夫回归的动态软测量建模方法[J]. 化工学报, 2023, 74(6): 2495-2502. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 867
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 695
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||