1 |
史权, 张立. 催化裂化油浆及其窄馏分芳烃组成分析 [J]. 石油学报, 2000, 16(2): 90-94.
|
|
Shi Q, Zhang L. Analysis of aromatic types in FCC slurry oils and their separated narrow fractions [J]. Acta Petrolei Sinica(Petroleum Processing Section), 2000, 16 (2): 90-94.
|
2 |
Song X, Liu D, Lou B, et al. Removal of catalyst particles from fluid catalytic cracking slurry oil by the simultaneous addition of a flocculants and a weighting agent[J]. Chemical Engineering Research and Design, 2018, 132: 686-696.
|
3 |
Wang G, Eser S. Molecular composition of the high-boiling components of needle coke feedstocks and mesophase development[J]. Energy & Fuels, 2007, 21(6): 3563-3572.
|
4 |
Lin C, Wang J, Chen S, et al. Thermal treatment of fluid catalytic cracking slurry oil: determination of the thermal stability and its correlation with the quality of derived cokes[J]. Journal of Analytical and Applied Pyrolysis, 2018, 135: 406-414.
|
5 |
Mochida I, Nakamo S, Oyama T, et al. Puffing and CTE of carbon rods prepared from hydrodesulfurized petroleum needle coke[J]. Carbon, 1988, 26(5): 751-754.
|
6 |
Wincek R T, Abrahamson J P, Eser S. Hydrodesulfurization of fluid catalytic cracking decant oils in a laboratory flow reactor and effect of hydrodesulfurization on subsequent coking[J]. Energy & Fuels, 2016, 30(8): 6281-6289.
|
7 |
Eser S, Wang G. A laboratory study of a pretreatment approach to accommodate high-sulfur FCC decant oils as feedstocks for commercial needle coke[J]. Energy & Fuels, 2007, 21(6): 3573-3582.
|
8 |
Filley R M, Eser S. Analysis of hydrocarbons and sulfur compounds in two FCC decant oils and their carbonization products[J]. Energy & Fuels, 1997, 11(3): 623-630.
|
9 |
Zhao S, Sparks B D, Kotlyar L S, et al. Reactivity of sulphur species in bitumen pitch and residua during fluid coking and hydrocracking[J]. Petroleum Science and Technology, 2002, 20(9/10): 1071-1085.
|
10 |
Taylor G H, Pennock G M, Gerald J D F, et al. Influence of QI on mesophase structure[J]. Carbon, 1993, 31(2): 341-354.
|
11 |
Eser S, Jenkins R G. Carbonization of petroleum feedstocks(Ⅱ): Chemical constitution of feedstock asphaltenes and mesophase development[J]. Carbon, 1989, 27(6): 889-897.
|
12 |
Zhu Y, Zhao C, Xu Y, et al. Preparation and characterization of coal pitch-based needle coke (I): The effects of aromatic index (fa) in refined coal pitch[J]. Energy & Fuels, 2019, 33(4): 3456-3464.
|
13 |
刘春林, 凌立成, 刘朗, 等. 大港常压渣油超临界萃取馏分制备中间相沥青的研究[J]. 石油学报(石油加工), 2002, 18(2): 54-58.
|
|
Liu C L, Ling L C, Liu L, et al. Mesophase pitch prepared by supercritical fluid extraction from Dagang petroleum residue [J]. Acta Petrolei Sinica(Petroleum Processing Section), 2002, 18(2): 54-58.
|
14 |
Martı́nez-Escandell M, Torregrosa P, Marsh H, et al. Pyrolysis of petroleum residues(I): Yields and product analyses[J]. Carbon, 1999, 37(10): 1567-1582.
|
15 |
Fleurot O, Edie D. Steady and transient rheological behavior of mesophase pitches[J]. Journal of Rheology, 1998, 42: 781-793.
|
16 |
Khandare P M, Zondlo J W, Stansberry P B, et al. Rheological investigations of pitch material(Ⅱ): Viscosity measurement of A240 and ARA-24 pitches using a high-temperature high-pressure rheometer[J]. Carbon, 2000, 38(6): 889-897.
|
17 |
Ramjee S, Rand B, Focke W W. Low shear rheological behaviour of two-phase mesophase pitch[J]. Carbon, 2015, 82: 368-380.
|
18 |
Weishauptová Z, Medek J, Rada M. Relation between texture and rheological properties of mesophase pitch[J]. Fuel, 1994, 73(2): 177-182.
|
19 |
Eser S, Wang G, Clemons J. constitution Molecular, reactivity carbonization, and mesophase development from FCC decant oil and its derivatives[M]// Heavy Hydrocarbon Resources. Washington, DC: American Chemical Society, 2005: 95-111.
|
20 |
Mochida I, Korai Y, Fujitsu H, et al. Evaluation of several petroleum residues as the needle coke feedstock using a tube bomb[J]. Carbon, 1987, 25(2): 259-264.
|
21 |
Yuan G, Jin Z, Zuo X, et al. Effect of carbonaceous precursors on the structure of mesophase pitches and their derived cokes[J]. Energy & Fuels, 2018, 32(8): 8329-8339.
|
22 |
Mochida I, Qing F Y, Korai Y, et al. Carbonization in the tube bomb leading to needle coke (Ⅲ): Carbonization properties of several coal-tar pitches[J]. Carbon, 1989, 27(3): 375-380.
|
23 |
Kakuta M, Tanaka H, Sato J, et al. A new calcining technology for manufacturing of coke with lower thermal expansion coefficient [J]. Carbon, 1981, 19(5): 347-352.
|
24 |
Eser S, Jenkins R G. Carbonization of petroleum feedstocks (Ⅰ): Relationships between chemical constitution of the feedstocks and mesophase development[J]. Carbon, 1989, 27(6): 877-887.
|
25 |
Tekinalp H L, Cervo E G, Fathollahi B, et al. The effect of molecular composition and structure on the development of porosity in pitch-based activated carbon fibers[J]. Carbon, 2013, 52: 267-277.
|
26 |
丁宗禹. 扩大针状焦的原料[J]. 石油炼制与化工, 1988, (9): 30-35.
|
|
Ding Z Y. Extending the feedstocks for needle coke production[J]. Petroleum Processing and Petrochemicals, 1988, (9): 30-35.
|
27 |
Sanada Y, Furuta T, Kimura H, et al. Formation of anisotropic mesophase from various carbonaceous materials in early stages of carbonization [J]. Fuel, 1973, 52(2): 143-148.
|
28 |
Ragan S, Marsh H. Carbonization and liquid-crystal (mesophase) development(22): Micro-strength and optical textures of cokes from coal-pitch co-carbonizations[J]. Fuel, 1981, 60(6): 522-528.
|
29 |
杜勇, 刘春法, 单长春, 等. 针状焦偏光显微分析方法及影响因素探讨[J]. 炭素技术, 2007, (6): 6-8.
|
|
Du Y, Liu C F, Shan C C, et al. Microstructure of needle coke by polarized light microscope and discussion on affecting factors [J]. Carbon Technology, 2007, (6): 6-8.
|
30 |
Zhang D, Zhang L, Fang X, et al. Enhancement of mesocarbon microbead (MCMB) preparation through supercritical fluid extraction and fractionation[J]. Fuel, 2019, 237: 753-762.
|
31 |
李春霞, 徐泽进, 乔曼, 等. 催化裂化油浆超临界萃取组分热缩聚生成中间相沥青的定量研究 [J]. 石油学报(石油加工), 2015, (1): 145-152.
|
|
Li C X, Xu Z J, Qiao M, et al. Quantitative analysis of mesophase development upon heating of the supercritical fluid extraction of FCC slurry [J]. Acta Petrolei Sinica(Petroleum Processing Section), 2015, (1): 145-152.
|
32 |
Wang G. Molecular composition of needle coke feedstocks and mesophase development during carbonization [D]. The Pennsylvania State: The Pennsylvania State University, 2005.
|
33 |
Zhang D, Zhang L, Yu Y, et al. Mesocarbon microbead production from fluid catalytic cracking slurry oil: improving performance through supercritical fluid extraction [J]. Energy & Fuels, 2018, 32(12): 12477-12485.
|
34 |
Mochida I, Korai Y, Oyama T. Semi-quantitative correlation between optical anisotropy and CTE of needle-like coke grains[J]. Carbon, 1987, 25(2): 273-278.
|