化工学报 ›› 2021, Vol. 72 ›› Issue (6): 3306-3315.doi: 10.11949/0438-1157.20201735

• 催化、动力学与反应器 • 上一篇    下一篇

Co3O4改性USY分子筛吸附和催化氧化甲苯特性研究

孙静(),董一霖,李法齐,李文翔,马晓玲,王文龙()   

  1. 山东大学能源与动力工程学院,燃煤污染物减排国家工程实验室,环境热工技术教育部工程研究中心,山东省能源碳减排技术与资源化利用重点实验室,山东 济南 250061
  • 收稿日期:2020-12-03 修回日期:2021-02-25 出版日期:2021-06-05 发布日期:2021-06-05
  • 通讯作者: 王文龙 E-mail:sunj7@sdu.edu.cn;wwenlong@sdu.edu.cn
  • 作者简介:孙静(1985—),女,博士,副教授,sunj7@sdu.edu.cn
  • 基金资助:
    国家重点研发计划项目(2018YFB0605200);山东大学青年学者未来计划项目(2018WLJH75)

Study on adsorption and catalytic oxidation characteristics of toluene on Co3O4 modified USY molecular sieve

SUN Jing(),DONG Yilin,LI Faqi,LI Wenxiang,MA Xiaoling,WANG Wenlong()   

  1. National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan 250061, Shandong, China
  • Received:2020-12-03 Revised:2021-02-25 Published:2021-06-05 Online:2021-06-05
  • Contact: WANG Wenlong E-mail:sunj7@sdu.edu.cn;wwenlong@sdu.edu.cn

摘要:

利用水热法合成Co3O4/USY复合材料,研究其对有机污染物甲苯的吸附和催化氧化特性,同时结合微波对Co3O4的精准加热特性,考察不同负载量Co3O4/USY在微波作用下的升温特性及催化甲苯氧化降解特性。结果表明,通过水热反应,Co3O4在USY表面形成多孔蜂窝状结构;负载Co3O4后的USY保持较高的吸附容量,Co3O4/USY-1.5m室温下的吸附容量为85 mg/g;Co3O4/USY在干、湿两种状态下均在325℃表现出优良的催化氧化特性、CO2选择性和稳定性;Co3O4/USY能够与微波高效耦合,快速升温启动其催化作用,控制反应温度为250℃,发现微波诱导甲苯催化氧化过程的CO2选择性优于常规催化,表明所制备Co3O4/USY复合材料具备吸附甲苯并进行微波快速再生协同有机污染物高效催化氧化降解的可行性。

关键词: Co3O4/USY, 复合材料, 分子筛, 吸附, 催化氧化, 微波, VOCs

Abstract:

Co3O4/USY composite material was synthesized by a hydrothermal method. Experimental study was conducted to investigate its absorption and catalytic oxidation characteristics of organic pollutant toluene. Since the Co3O4 can be efficiently heated by microwaves, the heating characteristics and catalytic oxidation of toluene on Co3O4 modified USY under microwave action were also investigated, with an aim to discuss the feasibility of microwave-assisted rapid regeneration of adsorbent whilst in-situ degradation of organic matter. By hydrothermal reaction, Co3O4 forms a porous cellular structure on the surface of USY. The USY loaded with Co3O4 maintains high adsorption capacity, and the adsorption capacity of Co3O4/USY-1.5m at room temperature is 85 mg/g. The prepared Co3O4/USY composite material exhibits excellent catalytic oxidation properties, CO2 selectivity and stability at 325℃ in both dry and wet conditions. The prepared Co3O4/USY composite material can couple with microwave in an efficient way, leading to quick start up its catalytic function. Comparative study shows that the CO2 selectivity and catalysis stability under the microwave heating scenario are better than conventional heating when the reaction temperature is controlled at 250℃. The above results indicate that the prepared Co3O4/USY composite material can be used as an adsorbent to adsorb toluene and regenerated by microwave heating whilst the desorbed organic matter can be efficiently degraded by in situ catalytic oxidation.

Key words: Co3O4/USY, composite material, molecular sieve, adsorption, catalytic oxidation, microwave, VOCs

中图分类号: 

  • TQ 028.8

图1

吸附/催化实验系统示意图"

图2

Co3O4/USY吸附剂XRD谱图"

图3

USY(a)、Co3O4/USY-1.5m(b)、Co3O4/USY-2m(c)及Co3O4/USY-3m(d)的SEM图"

表1

USY和Co3O4/USY复合材料的BET分析"

材料总比表面积/(m2/g)微孔表面积/(m2/g)外表面积/(m2/g)总孔容/(cm3/g)微孔孔容/(cm3/g)介孔孔容/(cm3/g)平均孔径/nm
USY828732960.440.280.161.36
Co3O4/USY-1.5m5843592260.560.170.392.27
Co3O4/USY-2m5242602640.620.110.512.64
Co3O4/USY-3m4492651840.540.110.432.76

图4

USY及Co3O4/USY复合材料对甲苯的吸附性能"

图5

Co3O4/USY催化甲苯氧化特性"

图6

Co3O4/USY在干、湿条件下催化甲苯氧化特性"

图7

Co3O4/USY-1.5m在干态(a)及不同湿度(b)条件下催化甲苯稳定性"

图8

Co3O4/USY在微波作用下的升温特性"

图9

常规加热(a)和微波加热(b)250℃条件下催化甲苯的对比特性(N表示常规催化;M表示微波催化)"

1 李红, 彭良, 毕方, 等. 我国PM2.5与臭氧污染协同控制策略研究[J]. 环境科学研究, 2019, 32(10): 1763-1778.
Li H, Peng L, Bi F, et al. Strategy of coordinated control of PM2.5 and ozone in China[J]. Research of Environmental Sciences, 2019, 32(10): 1763-1778.
2 中华人民共和国生态环境部. 关于印发«2020年挥发性有机物治理攻坚方案»的通知[EB/OL]. [2020-06-24]. .
Ministry of Ecology and Environment, PRC. Notice on issuing the Tackling Plan for the Treatment of Volatile Organic Compounds in 2020[EB/OL]. [2020-06-24]. .
3 刘伟, 李立清, 姚小龙, 等. 活性炭孔隙结构在其甲苯吸附中的作用[J]. 环境工程学报, 2012, 6(9): 3210-3218.
Liu W, Li L Q, Yao X L, et al. Pore structure effects on activated carbon adsorption behavior for toluene[J]. Chinese Journal of Environmental Engineering, 2012, 6(9): 3210-3218.
4 Lv Y, Sun J, Yu G Q, et al. Hydrophobic design of adsorbent for VOC removal in humid environment and quick regeneration by microwave[J]. Microporous and Mesoporous Materials, 2020, 294: 109869.
5 Qie Z P, Zhang Z K, Sun F, et al. Effect of pore hierarchy and pore size on the combined adsorption of SO2 and toluene in activated coke[J]. Fuel, 2019, 257: 116090.
6 Li R N, Xue T S, Li Z, et al. Hierarchical structure ZSM-5/SBA-15 composite with improved hydrophobicity for adsorption-desorption behavior of toluene[J]. Chemical Engineering Journal, 2020, 392: 124861.
7 王敏, 翁艺斌, 陈进富, 等. 吸附法治理工业源挥发性有机物的研究进展[J]. 现代化工, 2020, 40(10): 15-19, 25.
Wang M, Weng Y B, Chen J F, et al. Research progress on treatment of industrial sectors-based VOCs by adsorption[J]. Modern Chemical Industry, 2020, 40(10): 15-19, 25.
8 吴桐, 周玉香, 王芳, 等. 燃烧法用于VOCs末端治理的研究进展[J]. 山东化工, 2020, 49(4): 80-81, 84.
Wu T, Zhou Y X, Wang F, et al. Research progress of combustion method in terminal treatment for volatile organic compounds[J]. Shandong Chemical Industry, 2020, 49(4): 80-81, 84.
9 Liu G Z, Tian Y J, Zhang B F, et al. Catalytic combustion of VOC on sandwich-structured Pt@ZSM-5 nanosheets prepared by controllable intercalation[J]. Journal of Hazardous Materials, 2019, 367: 568-576.
10 He C, Yu Y K, Shen Q, et al. Catalytic behavior and synergistic effect of nanostructured mesoporous CuO-MnOx-CeO2 catalysts for chlorobenzene destruction[J]. Applied Surface Science, 2014, 297: 59-69.
11 Zang M, Zhao C C, Wang Y Q, et al. A review of recent advances in catalytic combustion of VOCs on perovskite-type catalysts[J]. Journal of Saudi Chemical Society, 2019, 23(6): 645-654.
12 Pan K L, Pan G T, Chong S, et al. Removal of VOCs from gas streams with double perovskite-type catalysts[J]. Journal of Environmental Sciences, 2018, 69: 205-216.
13 Levasseur B, Kaliaguine S. Effects of iron and cerium in La1-yCeyCo1-xFexO3 perovskites as catalysts for VOC oxidation[J]. Applied Catalysis B: Environmental, 2009, 88(3/4): 305-314.
14 崔维怡, 惠继星, 谭乃迪. 非贵金属催化剂催化氧化甲醛的研究进展[J]. 化工进展, 2018, 37(11): 4286-4293.
Cui W Y, Hui J X, Tan N D. Research progress on catalytic oxidation of formaldehyde over non-noble metal catalysts[J]. Chemical Industry and Engineering Progress, 2018, 37(11): 4286-4293.
15 冯爱虎, 于洋, 于云, 等. 沸石分子筛及其负载型催化剂去除VOCs研究进展[J]. 化学学报, 2018, 76(10): 757-773.
Feng A H, Yu Y, Yu Y, et al. Recent progress in the removal of volatile organic compounds by zeolite and its supported catalysts[J]. Acta Chimica Sinica, 2018, 76(10): 757-773.
16 张兴, 裴文波, 侯志全, 等. 多孔复合金属氧化物的制备及其在消除挥发性有机物中的应用[J]. 工业催化, 2020, 28(4): 39-51.
Zhang X, Pei W B, Hou Z Q, et al. Preparation of porous mixed metal oxides and their catalytic applications in the removal of volatile organic compounds[J]. Industrial Catalysis, 2020, 28(4): 39-51.
17 戴洪兴, 侯志全, 张兴, 等. 规整形貌和多孔催化剂对挥发性有机物氧化的催化性能[J]. 北京工业大学学报, 2019, 45(11): 1095-1114.
Dai H X, Hou Z Q, Zhang X, et al. Catalytic performance of regularly morphological and porous catalysts for the oxidation of volatile organic compounds[J]. Journal of Beijing University of Technology, 2019, 45(11): 1095-1114.
18 Liu W, Liu R, Zhang H Y, et al. Fabrication of Co3O4 nanospheres and their catalytic performances for toluene oxidation: The distinct effects of morphology and oxygen species[J]. Applied Catalysis A: General, 2020, 597: 117539.
19 Xu W C, Xiao K B, Lai S F, et al. Designing a dumbbell-brush-type Co3O4 for efficient catalytic toluene oxidation[J]. Catalysis Communications, 2020, 140: 106005.
20 Wang B D, Gan F L, de Dai Z, et al. Air oxidation coupling NH3 treatment of biomass derived hierarchical porous biochar for enhanced toluene removal[J]. Journal of Hazardous Materials, 2021, 403: 123995.
21 黄心远. 酸性分子筛催化的有机重排反应研究[D]. 上海: 华东师范大学, 2020.
Huang X Y. Acidic molecular sieves catalyzed rearrangement reactions[D]. Shanghai: East China Normal University, 2020.
22 Shi Y J, Li Z M, Wang J L, et al. Synergistic effect of Pt/Ce and USY zeolite in Pt-based catalysts with high activity for VOCs degradation[J]. Applied Catalysis B: Environmental, 2021, 286: 119936.
23 高瑞忠, 赵红娟, 高雄厚, 等. USY分子筛的改性及应用进展[J]. 工业催化, 2017, 25(11): 8-12.
Gao R Z, Zhao H J, Gao X H, et al. Progress in modification and application of USY zeolites[J]. Industrial Catalysis, 2017, 25(11): 8-12.
24 Huang Q Q, Xue X M, Zhou R X. Catalytic behavior and durability of CeO2 or/and CuO modified USY zeolite catalysts for decomposition of chlorinated volatile organic compounds[J]. Journal of Molecular Catalysis A: Chemical, 2011, 344(1/2): 74-82.
25 Huang Q Q, Meng Z H, Zhou R X. The effect of synergy between Cr2O3-CeO2 and USY zeolite on the catalytic performance and durability of chromium and cerium modified USY catalysts for decomposition of chlorinated volatile organic compounds[J]. Applied Catalysis B: Environmental, 2012, 115/116: 179-189.
26 刘秉国, 彭金辉, 张利波, 等. 碱式碳酸钴在微波场中的吸波特性及升温行为研究[J]. 无机盐工业, 2010, 42(3): 11-13, 16.
Liu B G, Peng J H, Zhang L B, et al. Study on microwave-absorbing characteristics and temperature rise behavior of basic cobalt carbonate in microwave fields[J]. Inorganic Chemicals Industry, 2010, 42(3): 11-13, 16.
27 刘秉国, 彭金辉, 张利波, 等. 草酸钴在微波场中的吸波特性及升温行为研究[J]. 化工科技, 2010, 18(2): 1-4.
Liu B G, Peng J H, Zhang L B, et al. Study on microwave-absorbing characteristics and temperature rise behavior of cobalt oxalate in microwave fields[J]. Science & Technology in Chemical Industry, 2010, 18(2): 1-4.
28 吕昱亭. 基于分子筛改性的VOCs吸附和催化氧化试验研究[D]. 济南: 山东大学, 2020.
Lyu Y T. Experimental research on VOCs adsorption and catalytic oxidation based on modified molecular sieve[D]. Jinan: Shandong University, 2020.
29 宁轲, 卜龙利, 刘双, 等. 整体式催化剂活性组分负载策略及微波催化燃烧甲苯特性[J]. 燃料化学学报, 2020, 48(9): 1140-1152.
Ning K, Bo L L Liu S, et al. Loading strategy for the active components of monolithic catalyst and its influences on the microwave enhanced catalytic combustion of toluene[J]. Journal of Fuel Chemistry and Technology, 2020, 48(9): 1140-1152.
30 Zhang F S, Song Z L, Zhu J Z, et al. Factors influencing CH4-CO2 reforming reaction over Fe catalyst supported on foam ceramics under microwave irradiation[J]. International Journal of Hydrogen Energy, 2018, 43(20): 9495-9502.
[1] 赵继昊, 唐伟强, 徐小飞, 赵双良, 贺炅皓. 高分子复合材料中键合剂在不同纳米填料表面的吸附能计算[J]. 化工学报, 2022, 73(7): 3174-3181.
[2] 高端辉, 肖卫强, 高峰, 夏倩, 汪曼秋, 卢昕博, 詹晓力, 张庆华. 聚酰亚胺基气凝胶材料的制备与应用[J]. 化工学报, 2022, 73(7): 2757-2773.
[3] 黄陆月, 刘畅, 许勇毅, 邢浩若, 王峰, 马双忱. CDI二维浓度传质模型的建立以及实验验证[J]. 化工学报, 2022, 73(7): 2933-2943.
[4] 黄仕元, 邓简, 袁瀚钦, 王国华, 吴兴良. 钴强化铁磁体活化过一硫酸盐的实验研究[J]. 化工学报, 2022, 73(7): 3045-3056.
[5] 朱江伟, 马鹏飞, 杜晓, 杨言言, 郝晓刚, 罗善霞. 基于可变价NiFe-LDH/rGO对磷酸根离子的特异性电控分离[J]. 化工学报, 2022, 73(7): 3057-3067.
[6] 赵涛岩, 曹江涛, 李平, 冯琳, 商瑀. 区间二型模糊免疫PID在环己烷无催化氧化温度控制系统中的应用[J]. 化工学报, 2022, 73(7): 3166-3173.
[7] 黄丽菁, 黄继娇, 李鹏辉, 刘芷诺, 蒋康杰, 吴文娟. 木质素羟丙基磺甲基化改性及其对纤维素酶水解的影响[J]. 化工学报, 2022, 73(7): 3232-3239.
[8] 王姝焱, 张瑞阳, 刘润, 刘凯, 周莹. Mn(BO22/BNO界面结构调控增强催化臭氧分解性能研究[J]. 化工学报, 2022, 73(7): 3193-3201.
[9] 郑涛, 刘海燕, 张睿, 孟祥海, 岳源源, 刘植昌. 基于分子筛绿色合成的天然硅铝矿物介尺度活化研究进展[J]. 化工学报, 2022, 73(6): 2334-2351.
[10] 曾欣欣, 白慧娟, 俞娟, 黄培, 杨超, 徐俊波. 面向空天动力用聚酰亚胺树脂基复合材料介尺度结构与调控[J]. 化工学报, 2022, 73(6): 2352-2369.
[11] 王婵, 肖国锡, 郭小雪, 徐人威, 岳源源, 鲍晓军. 基于介尺度结构解聚-重组装的Beta分子筛的绿色合成及应用[J]. 化工学报, 2022, 73(6): 2690-2697.
[12] 李丽媛, 王建强, 陈奕, 郭友娣, 周健, 刘志成, 王仰东, 谢在库. 甲醇制丙烯反应中ZSM-5分子筛催化剂积炭失活介尺度机制研究[J]. 化工学报, 2022, 73(6): 2669-2676.
[13] 李梦雨, 王冬祥, 郑晓阳, 徐桂转, 杜朝军, 常春. 粗甘油生物基聚氨酯材料的制备及吸附性能研究[J]. 化工学报, 2022, 73(5): 2270-2278.
[14] 赵希强, 张健, 孙爽, 王文龙, 毛岩鹏, 孙静, 刘景龙, 宋占龙. 生物质炭改性微球去除化工废水中无机磷的性能研究[J]. 化工学报, 2022, 73(5): 2158-2173.
[15] 陈子禾, 赵呈志, 冒文莉, 盛楠, 朱春宇. 定向生物质多孔碳复合相变材料的制备及其热性能研究[J]. 化工学报, 2022, 73(4): 1817-1825.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!