化工学报 ›› 2022, Vol. 73 ›› Issue (5): 2031-2038.DOI: 10.11949/0438-1157.20220036
收稿日期:
2022-01-07
修回日期:
2022-02-09
出版日期:
2022-05-05
发布日期:
2022-05-24
通讯作者:
贾胜坤,袁希钢
作者简介:
刘星伟(1997—),男,硕士研究生,基金资助:
Xingwei LIU1(),Shengkun JIA1(),Yiqing LUO1,Xigang YUAN1,2()
Received:
2022-01-07
Revised:
2022-02-09
Online:
2022-05-05
Published:
2022-05-24
Contact:
Shengkun JIA,Xigang YUAN
摘要:
从结构优化角度建立精馏塔优化的混合整数非线性规划(MINLP)模型,为了消除整数变量,引入绕流效率将MINLP问题转化为非线性规划(NLP)问题。针对得到的NLP问题提出一种优化方法,在该方法中采用结构优化中常用的信赖域优化算法进行求解,并应用虚拟瞬态连续性方程辅助优化中的稳态模拟。采用提出的优化方法对3个精馏系统进行设计优化,以不同初始值开始,均可得到令人满意的优化结果,表明所提优化方法具有良好的稳健性,对于较复杂的部分热耦合精馏过程仍然可以有效优化求解;信赖域算法在精馏塔优化中也表现出良好的收敛性。
中图分类号:
刘星伟, 贾胜坤, 罗祎青, 袁希钢. 基于信赖域算法的精馏塔优化[J]. 化工学报, 2022, 73(5): 2031-2038.
Xingwei LIU, Shengkun JIA, Yiqing LUO, Xigang YUAN. Optimization of distillation column based on trust region algorithm[J]. CIESC Journal, 2022, 73(5): 2031-2038.
绕流效率的 初值 | N1 | N2 | RR/ (kmol/kmol) | Vf/ (kmol/kmol) | TAC/ (104 USD/a) |
---|---|---|---|---|---|
0.1 | 20 | 19 | 6.30 | 0.8348 | 325.445 |
0.3 | 20 | 19 | 6.30 | 0.8348 | 325.445 |
0.5 | 21 | 20 | 6.15 | 0.8323 | 327.789 |
0.7 | 20 | 20 | 6.22 | 0.8334 | 326.351 |
0.9 | 21 | 20 | 6.15 | 0.8323 | 327.789 |
表1 乙苯-苯乙烯分离塔的优化结果
Table 1 Optimization results of ethylbenzene-styrene column
绕流效率的 初值 | N1 | N2 | RR/ (kmol/kmol) | Vf/ (kmol/kmol) | TAC/ (104 USD/a) |
---|---|---|---|---|---|
0.1 | 20 | 19 | 6.30 | 0.8348 | 325.445 |
0.3 | 20 | 19 | 6.30 | 0.8348 | 325.445 |
0.5 | 21 | 20 | 6.15 | 0.8323 | 327.789 |
0.7 | 20 | 20 | 6.22 | 0.8334 | 326.351 |
0.9 | 21 | 20 | 6.15 | 0.8323 | 327.789 |
绕流效率的初始值 | N1 | N2 | N3 | N4 | RR1/(kmol/kmol) | Vf1/(kmol/kmol) | RR2/(kmol/kmol) | Vf2/(kmol/kmol) | TAC/(104 USD/a) |
---|---|---|---|---|---|---|---|---|---|
0.1 | 9 | 14 | 12 | 13 | 1.41 | 0.6124 | 1.50 | 0.7535 | 544.851 |
0.3 | 8 | 15 | 11 | 12 | 1.42 | 0.6142 | 1.52 | 0.7551 | 544.371 |
0.5 | 8 | 14 | 11 | 12 | 1.44 | 0.6142 | 1.53 | 0.7555 | 544.024 |
0.7 | 8 | 14 | 12 | 12 | 1.43 | 0.6137 | 1.52 | 0.7546 | 544.207 |
0.9 | 8 | 14 | 11 | 12 | 1.44 | 0.6142 | 1.53 | 0.7556 | 544.024 |
表2 直接序列精馏塔的优化结果
Table 2 Optimization results of direct sequence distillation column
绕流效率的初始值 | N1 | N2 | N3 | N4 | RR1/(kmol/kmol) | Vf1/(kmol/kmol) | RR2/(kmol/kmol) | Vf2/(kmol/kmol) | TAC/(104 USD/a) |
---|---|---|---|---|---|---|---|---|---|
0.1 | 9 | 14 | 12 | 13 | 1.41 | 0.6124 | 1.50 | 0.7535 | 544.851 |
0.3 | 8 | 15 | 11 | 12 | 1.42 | 0.6142 | 1.52 | 0.7551 | 544.371 |
0.5 | 8 | 14 | 11 | 12 | 1.44 | 0.6142 | 1.53 | 0.7555 | 544.024 |
0.7 | 8 | 14 | 12 | 12 | 1.43 | 0.6137 | 1.52 | 0.7546 | 544.207 |
0.9 | 8 | 14 | 11 | 12 | 1.44 | 0.6142 | 1.53 | 0.7556 | 544.024 |
绕流效率的初始值 | N1 | N2 | N3 | N4 | RR1/(kmol/kmol) | Sf/(kmol/kmol) | RR2/(kmol/kmol) | Vf/(kmol/kmol) | TAC/(104 USD/a) |
---|---|---|---|---|---|---|---|---|---|
0.1 | 8 | 17 | 11 | 11 | 2.53 | 0.4507 | 2.53 | 0.6611 | 224.098 |
0.3 | 7 | 17 | 11 | 11 | 2.56 | 0.4476 | 2.52 | 0.6620 | 224.189 |
0.5 | 7 | 18 | 10 | 11 | 2.56 | 0.4485 | 2.54 | 0.6631 | 224.328 |
0.7 | 8 | 18 | 11 | 11 | 2.51 | 0.4508 | 2.52 | 0.6605 | 224.206 |
0.9 | 7 | 18 | 10 | 11 | 2.56 | 0.4485 | 2.54 | 0.6631 | 224.328 |
表3 部分热耦合精馏过程优化结果
Table 3 Optimization results of partially thermally coupled distillation process
绕流效率的初始值 | N1 | N2 | N3 | N4 | RR1/(kmol/kmol) | Sf/(kmol/kmol) | RR2/(kmol/kmol) | Vf/(kmol/kmol) | TAC/(104 USD/a) |
---|---|---|---|---|---|---|---|---|---|
0.1 | 8 | 17 | 11 | 11 | 2.53 | 0.4507 | 2.53 | 0.6611 | 224.098 |
0.3 | 7 | 17 | 11 | 11 | 2.56 | 0.4476 | 2.52 | 0.6620 | 224.189 |
0.5 | 7 | 18 | 10 | 11 | 2.56 | 0.4485 | 2.54 | 0.6631 | 224.328 |
0.7 | 8 | 18 | 11 | 11 | 2.51 | 0.4508 | 2.52 | 0.6605 | 224.206 |
0.9 | 7 | 18 | 10 | 11 | 2.56 | 0.4485 | 2.54 | 0.6631 | 224.328 |
1 | Kiss A A. Distillation technology-still young and full of breakthrough opportunities[J]. Journal of Chemical Technology & Biotechnology, 2014, 89(4): 479-498. |
2 | Cardoso M F, Salcedo R L, de Azevedo S F, et al. A simulated annealing approach to the solution of minlp problems[J]. Computers & Chemical Engineering, 1997, 21(12): 1349-1364. |
3 | Tsirlin A M, Balunov A I, Sukin I A. Estimates of energy consumption and selection of optimal distillation sequence for multicomponent distillation[J]. Theoretical Foundations of Chemical Engineering, 2016, 50(3): 250-259. |
4 | Pleşu V, Bonet Ruiz A E, Bonet J, et al. Shortcut assessment of alternative distillation sequence schemes for process intensification[J]. Computers & Chemical Engineering, 2015, 83: 58-71. |
5 | 雷杨, 张冰剑, 陈清林. 基于MINLP的精馏塔进料板位置优化[J]. 化工进展, 2011, 30(S2): 80-84. |
Lei Y, Zhang B J, Chen Q L. Optimization of feed tray location for a distillation column based on MINLP[J]. Chemical Industry and Engineering Progress, 2011, 30(S2): 80-84. | |
6 | 姜奕. 基于混整空间粒子群算法的精馏塔优化设计[D]. 青岛: 青岛科技大学, 2015. |
Jiang Y. Optimum design of distillation column with mixed integer space particle swarm optimization algorithm[D]. Qingdao: Qingdao University of Science & Technology, 2015. | |
7 | 廖明森, 赵月红, 宁朋歌, 等. 基于MINLP模型的焦化废水蒸氨塔操作优化[J]. 过程工程学报, 2014, 14(1): 125-132. |
Liao M S, Zhao Y H, Ning P G, et al. Optimization of distillation operation for coking wastewater treatment based on MINLP model[J]. The Chinese Journal of Process Engineering, 2014, 14(1): 125-132. | |
8 | Viswanathan J, Grossmann I E. A combined penalty function and outer-approximation method for MINLP optimization[J]. Computers & Chemical Engineering, 1990, 14(7): 769-782. |
9 | Ciric A R, Gu D Y. Synthesis of nonequilibrium reactive distillation processes by MINLP optimization[J]. AIChE Journal, 1994, 40(9): 1479-1487. |
10 | Bauer M H, Stichlmair J. Design and economic optimization of azeotropic distillation processes using mixed-integer nonlinear programming[J]. Computers & Chemical Engineering, 1998, 22(9): 1271-1286. |
11 | Dünnebier G, Pantelides C C. Optimal design of thermally coupled distillation columns[J]. Industrial & Engineering Chemistry Research, 1999, 38(1): 162-176. |
12 | Lang Y D, Biegler L T. Distributed stream method for tray optimization[J]. AIChE Journal, 2002, 48(3): 582-595. |
13 | Neves F J M, Silva D C M, Oliveira N M C. A robust strategy for optimizing complex distillation columns[J]. Computers & Chemical Engineering, 2005, 29(6): 1457-1471. |
14 | Kraemer K, Kossack S, Marquardt W. Efficient optimization-based design of distillation processes for homogeneous azeotropic mixtures[J]. Industrial & Engineering Chemistry Research, 2009, 48(14): 6749-6764. |
15 | 袁亚湘. 信赖域方法的收敛性[J]. 计算数学, 1994, 16(3): 333-346. |
Yuan Y X. On the convergence of trust region algorithms[J]. Mathematica Numerica Sinica, 1994, 16(3): 333-346. | |
16 | Dowling A W, Biegler L T. Rigorous optimization-based synthesis of distillation cascades without integer variables[M]//Computer Aided Chemical Engineering. Amsterdam: Elsevier, 2014: 55-60. |
17 | Svanberg K. The method of moving asymptotes—a new method for structural optimization[J]. International Journal for Numerical Methods in Engineering, 1987, 24(2): 359-373. |
18 | Svanberg K. A class of globally convergent optimization methods based on conservative convex separable approximations[J]. SIAM Journal on Optimization, 2002, 12(2): 555-573. |
19 | 郭丽华, 汤文成, 齐文春, 等. 全局收敛移动渐近线法子问题的求解与数值验证[J]. 机械设计, 2014, 31(6): 13-17. |
Guo L H, Tang W C, Qi W C, et al. Solution and numerical verification of sub-problem of globally convergent version of MMA[J]. Journal of Machine Design, 2014, 31(6): 13-17. | |
20 | Luo Z, Chen L, Yang J, et al. Compliant mechanism design using multi-objective topology optimization scheme of continuum structures[J]. Structural and Multidisciplinary Optimization, 2005, 30(2): 142-154. |
21 | Ma Y J, Luo Y Q, Yuan X G. Simultaneous optimization of complex distillation systems with a new pseudo-transient continuation model[J]. Industrial & Engineering Chemistry Research, 2017, 56(21): 6266-6274. |
22 | Jiang Z Y, Mathew T J, Zhang H B, et al. Global optimization of multicomponent distillation configurations: global minimization of total cost for multicomponent mixture separations[J]. Computers & Chemical Engineering, 2019, 126: 249-262. |
23 | Dowling A W, Gao Q W, Biegler L T. Equation-oriented optimization of cryogenic systems for coal oxycombustion power plants[M]//Proceedings of the 8th International Conference on Foundations of Computer-Aided Process Design. Amsterdam: Elsevier, 2014: 501-506. |
24 | Pattison R C, Gupta A M, Baldea M. Equation-oriented optimization of process flowsheets with dividing-wall columns[J]. AIChE Journal, 2016, 62(3): 704-716. |
25 | 翟建, 刘育良, 李鲁闽, 等. 萃取精馏分离苯/环己烷共沸体系模拟与优化[J]. 化工学报, 2015, 66(9): 3570-3579. |
Zhai J, Liu Y L, Li L M, et al. Simulation and optimization of extractive distillation for separation of azeotropic benzene/cyclohexane system[J]. CIESC Journal, 2015, 66(9): 3570-3579. | |
26 | Dejanović I, Matijašević L, Olujić Ž. Dividing wall column—a breakthrough towards sustainable distilling[J]. Chemical Engineering and Processing: Process Intensification, 2010, 49(6): 559-580. |
27 | Asprion N, Kaibel G. Dividing wall columns: fundamentals and recent advances[J]. Chemical Engineering and Processing: Process Intensification, 2010, 49(2): 139-146. |
28 | 龚超, 余爱平, 罗祎青, 等. 完全能量耦合精馏塔的设计、模拟与优化[J]. 化工学报, 2012, 63(1): 177-184. |
Gong C, Yu A P, Luo Y Q, et al. Design, simulation and optimization of fully thermally coupled distillation column[J]. CIESC Journal, 2012, 63(1): 177-184. | |
29 | Petlyuk F B, Platonov V M, Slavinskii D M. Thermodynamically optimal method of separating multicomponent mixtures[J]. Int. Chem. Eng., 1965, 5(3): 555-561. |
30 | Emtir M, Rév E, Mizsey P, et al. Comparison of integrated and coupled distillation schemes using different utility prices[J]. Computers & Chemical Engineering, 1999, 23: S799-S802. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[3] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[4] | 曹跃, 余冲, 李智, 杨明磊. 工业数据驱动的加氢裂化装置多工况切换过渡状态检测[J]. 化工学报, 2023, 74(9): 3841-3854. |
[5] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[6] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[7] | 张曼铮, 肖猛, 闫沛伟, 苗政, 徐进良, 纪献兵. 危废焚烧处理耦合有机朗肯循环系统工质筛选与热力学优化[J]. 化工学报, 2023, 74(8): 3502-3512. |
[8] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[9] | 尹刚, 李伊惠, 何飞, 曹文琦, 王民, 颜非亚, 向禹, 卢剑, 罗斌, 卢润廷. 基于KPCA和SVM的铝电解槽漏槽事故预警方法[J]. 化工学报, 2023, 74(8): 3419-3428. |
[10] | 陈国泽, 卫东, 郭倩, 向志平. 负载跟踪状态下的铝空气电池堆最优功率点优化方法[J]. 化工学报, 2023, 74(8): 3533-3542. |
[11] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[12] | 吴文涛, 褚良永, 张玲洁, 谭伟民, 沈丽明, 暴宁钟. 腰果酚生物基自愈合微胶囊的高效制备工艺研究[J]. 化工学报, 2023, 74(7): 3103-3115. |
[13] | 汤晓玲, 王嘉瑞, 朱玄烨, 郑仁朝. 基于Pickering乳液的卤醇脱卤酶催化合成手性环氧氯丙烷[J]. 化工学报, 2023, 74(7): 2926-2934. |
[14] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[15] | 高学金, 姚玉卓, 韩华云, 齐咏生. 基于注意力动态卷积自编码器的发酵过程故障监测[J]. 化工学报, 2023, 74(6): 2503-2521. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||