化工学报 ›› 2020, Vol. 71 ›› Issue (9): 4131-4140.DOI: 10.11949/0438-1157.20200547
收稿日期:
2020-05-09
修回日期:
2020-07-12
出版日期:
2020-09-05
发布日期:
2020-09-05
通讯作者:
侯瑞君
作者简介:
孙克宁(1964—),男,博士,教授,基金资助:
Kening SUN(),Qian CHEN,Mingming NIE,Ruijun HOU()
Received:
2020-05-09
Revised:
2020-07-12
Online:
2020-09-05
Published:
2020-09-05
Contact:
Ruijun HOU
摘要:
基于固体氧化物燃料电池(SOFC)的烃类原位重整供氢技术是重要的分布式和小型化制氢方案。传统镍基重整催化剂在烃类重整过程中,原料中微量的硫化物即可使催化剂中毒失活,严重时还可能造成巨大的安全隐患。本文梳理总结了催化剂硫中毒的机理,简述了天然气、液化石油气、液态烃重整原料中硫化物的组成和含量,重点分析了已报道的用于重整反应的抗硫催化剂并总结了有效可行的催化剂抗硫方案,并从重整制氢催化剂的硫中毒机理指导高效抗硫催化剂的开发。最后,文章指出,重整催化综合性能的提升、重整原料的预处理和重整反应器设计等综合抗硫策略也是重要的研究方向。
中图分类号:
孙克宁, 陈谦, 聂明明, 侯瑞君. 重整催化剂的抗硫性能研究进展[J]. 化工学报, 2020, 71(9): 4131-4140.
Kening SUN, Qian CHEN, Mingming NIE, Ruijun HOU. Progress in the sulfur resistance of reforming catalysts[J]. CIESC Journal, 2020, 71(9): 4131-4140.
图2 Rh、Ni、Rh2Ni1、Rh1Ni2表面上四种基本丙烷蒸汽重整路径活化能垒的比较[32]
Fig.2 Comparison of activation barriers across surfaces of Rh, Ni, Rh2Ni1 and Rh1Ni2 for four elementary propane steam reforming paths[32]
金属 | 吸附能/eV | |
---|---|---|
H2S | S | |
Ni | -0.95 | -5.62 |
Ni-Cu | -0.94 | -5.68 |
Ni-Ag | -0.57 | -5.04 |
Ni-Au | -0.75 | -4.63 |
Ni-Rh | -1.03 | -5.38 |
Ni-Pd | -0.88 | -5.30 |
Ni-Pt | -0.82 | -4.98 |
表1 H2S、S在Ni和Ni-M合金表面的吸附能
Table 1 Adsorption energies of H2S, S on the Ni and M/Ni surfaces
金属 | 吸附能/eV | |
---|---|---|
H2S | S | |
Ni | -0.95 | -5.62 |
Ni-Cu | -0.94 | -5.68 |
Ni-Ag | -0.57 | -5.04 |
Ni-Au | -0.75 | -4.63 |
Ni-Rh | -1.03 | -5.38 |
Ni-Pd | -0.88 | -5.30 |
Ni-Pt | -0.82 | -4.98 |
44 | Palm C, Cremer P, Peters R, et al. Small-scale testing of a precious metal catalyst in the autothermal reforming of various hydrocarbon feeds[J]. J. Power Sources, 2002, 106(1/2): 231-237. |
45 | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 车用汽油(V): GB 17930—2013[S]. 北京: 中国标准出版社, 2013. |
General Administration of Quality Supervision, Inspection and Quarantine of the Peoples Republic of China, Standardization Administration of the Peoples Republic of China. Information and documentation—gasoline for motor vehicles(V): GB 17930—2013[S]. Beijing: Standards Press of China, 2013. | |
46 | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 车用柴油(V): GB 19147—2013[S]. 北京: 中国标准出版社, 2013. |
General Administration of Quality Supervision, Inspection and Quarantine of the Peoples Republic of China, Standardization Administration of the Peoples Republic of China. Information and documentation—automobile diesel fuels(V): GB 19147—2013[S]. Beijing: Standards Press of China, 2013. | |
47 | Jiménez-González C, Boukha Z, de Rivas B, et al. Behaviour of nickel-alumina spinel (NiAl2O4) catalysts for isooctane steam reforming[J]. Int. J. Hydrogen Energy, 2015, 40(15): 5281-5288. |
48 | Wu G, Zhang C, Li S, et al. Hydrogen production via glycerol steam reforming over Ni/Al2O3: influence of nickel precursors[J]. ACS Sustain. Chem. Eng., 2013, 1(8): 1052–1062. |
49 | Simson A, Farrauto R, Castaldi M. Steam reforming of ethanol/gasoline mixtures, deactivation, regeneration and stable performance[J]. Appl. Catal. B Environ., 2011, 106(3/4): 295-303. |
50 | Xie C, Chen Y, Li Y, et al. Influence of sulfur on the carbon deposition in steam reforming of liquid hydrocarbons over CeO2-Al2O3 supported Ni and Rh catalysts[J]. Appl. Catal. A: Gen., 2011, 394(1/2): 32-40. |
51 | Cheekatamarla P K, Thomson W J. Catalytic activity of molybdenum carbide for hydrogen generation via diesel reforming[J]. J. Power Sources, 2006, 158(1): 477-484. |
52 | Chao X, Chen Y S, Li Y, et al. Influence of sulfur on the carbon deposition in steam reforming of liquid hydrocarbons over CeO2-Al2O3 supported Ni and Rh catalysts [J]. Appl. Catal. A: Gen., 2011, 394: 32-40. |
1 | 孙道安, 李春迎, 张伟, 等. 典型碳氢化合物水蒸气重整制氢研究进展[J]. 化工进展, 2012, 31(4): 801-806. |
Sun D A, Li C Y, Zhang W, et al. Progress in hydrogen production from the steam reforming of typical hydrocarbons[J]. Chemical Industry and Engineering Progress, 2012, 31(4): 801-806. | |
53 | Suzuki T, Iwanami H I, Yoshinari T. Steam reforming of kerosene on Ru/Al2O3 catalyst to yield hydrogen[J]. Int. J. Hydrogen Energy, 2000, 25: 119-126. |
54 | Yoon S, Bae J, Lee S, et al. A diesel fuel processor for stable operation of solid oxide fuel cells system(Ⅱ): Integrated diesel fuel processor for the operation of solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2012, 37(11): 9228-9236. |
2 | 孙道安, 李春迎, 张伟, 等. 烃类水蒸汽重整制氢研究进展[J]. 工业催化, 2011, 19(12): 21-26. |
Sun D A, Li C Y, Zhang W, et al. Progress in hydrogen production from steam reforming of hydrocarbons[J]. Industrial Catalysis, 2011, 19(12): 21-26. | |
3 | 吴涛涛, 张会生. 重整制氢技术及其研究进展[J]. 能源技术, 2006, 27(4): 161-167. |
Wu T T, Zhang H S. The reforming technology to produce hydrogen and its research development[J]. Energy Technology, 2006, 27(4): 161-167. | |
4 | 陈亚中. 镍催化剂上烃类燃料重整制氢新工艺过程的研究[D]. 大连: 中国科学院研究生院(大连化学物理研究所), 2006. |
Chen Y Z. Studies on novel process for efficient hydrogen production from hydrocarbon fuels over nickel-based reforming catalysts[D]. Dalian: Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 2006. | |
5 | 万会军. 甲烷水蒸气重整制合成气新型催化剂的制备及性能研究[D]. 北京: 北京化工大学, 2007. |
Wan H J. Preparation and catalytic performance of novel catalysts for steam reforming of methane[D]. Beijing: Beijing University of Chemical Technology, 2007. | |
6 | 方修忠. 高效抗积碳Ni基甲烷重整制氢催化剂的制备和性能研究[D]. 南昌: 南昌大学, 2016. |
Fang X Z. The preparation of highly active and coke resistant Ni-based catalysts for methane reforming for hydrogen production[D]. Nanchang: Nanchang University, 2016. | |
7 | Reed J, Chen R, Dudfield C, et al. A multi-function compact micro-channel reactor coated with sulphur tolerant catalyst for LPG steam reforming[J]. Fuel Cells, 2015, 15(3): 516-522. |
8 | Vahc Z Y, Jung C Y, Yi S C. Performance degradation of solid oxide fuel cells due to sulfur poisoning of the electrochemical reaction and internal reforming reaction[J]. Int. J. Hydrogen Energy, 2014, 39: 17275–17283. |
9 | Acha E, van Delft Y C, Cambra J F, et al. Thin PdCu membrane for hydrogen purification from in-situ produced methane reforming complex mixtures containing H2S[J]. Chem. Eng. Sci., 2018, 176: 429-438. |
10 | Cristina D, María T I, Francisco G L, et al. Effect of H2S on the behavior of an impregnated NiO-based oxygen-carrier for chemical-looping combustion (CLC) [J]. Appl. Catal. B: Environ., 2012, 126: 186-199. |
11 | Tze Y Y, Janjam A, Sibudjing K. Recent developments in sulphur-resilient catalytic systems for syngas production [J]. Renewable and Sustainable Energy Reviews, 2019, 100: 52-70. |
12 | Whitney S J, Stephanie M V, Anthony M D. A comparison of H2S, SO2, and COS poisoning on Ni/YSZ and Ni/K2O-CaAl2O4 during methane steam and dry reforming [J]. Appl. Catal. A-Gen., 2015, 502: 399-409. |
13 | Gabriella G, Alvaro R P, Elisabetta F, et al. A study of the deactivation of low loading Ni/Al2O3 steam reforming catalyst by tetrahydrothiophene [J]. Catalysis Communications, 2013, 38: 67-73. |
14 | Gillan C, Fowles M, French S, et al. Ethane steam reforming over a platinum/alumina catalyst: effect of sulfur poisoning [J]. Ind. Eng. Chem. Res., 2013, 52(37): 13350-13356. |
15 | Matthew D K, Kerry M D, Michael J J. Alkane reforming on partially sulfided CeO2 (111) surfaces [J]. Journal of Catalysis, 2015, 330: 167-176. |
16 | Chen Y L, Chao X, Yan L, et al. Sulfur poisoning mechanism of steam reforming catalysts: an X-ray absorption near edge structure (XANES) spectroscopic study[J]. PCCP, 2010, 12: 5702-5711. |
17 | Hou K, Hughes R. The kinetics of methane steam reforming over a Ni/α-Al2O catalyst [J]. Chemical Engineering Journal, 2001, 82: 311-328. |
18 | Yoon Y, Kim H, Lee J. Enhanced catalytic behavior of Ni alloys in steam methane reforming [J]. Journal of Power Sources, 2017, 359: 450-457. |
19 | 陈曦. 镍基催化剂制备及在甲烷水蒸气重整反应中的应用[D]. 大连: 大连理工大学, 2014. |
Chen X. Preparation of Ni-based catalysts and application in steam reforming of methane[D]. Dalian: Dalian University of Technology, 2014 | |
20 | Fumihiro W, Ikuko K, Naohiro S, et al. Sulfur tolerance of noble metal catalysts for steam methane reforming [J]. Journal of the Japan Petroleum Institute, 2017, 60(3): 137-145. |
21 | Kantserova M R, Orlyk S M, Vasylyev O D. Catalytic activity and resistance to sulfur poisoning of nickel-containing composites based on stabilized zirconia in tri-reforming of methane[J]. Theor. Exp. Chem., 2018, 53: 387-394. |
22 | Sapountzi F M, Zhao C, Boréave A, et al. Sulphur tolerance of Au-modified Ni/GDC during catalytic methane steam reforming [J]. Catal. Sci. Technol., 2018, 8: 1578-1588. |
23 | Fang X Z, Zhang X H, Guo Y, et al. Highly active and stable Ni/Y2Zr2O7 catalysts for methane steam reforming: on the nature and effective preparation method of the pyrochlore support [J]. Int. J. Hydrogen Energy, 2016, 41: 11141-11153. |
24 | Postole G, Bosselet F, Bergeret G, et al. On the promoting effect of H2S on the catalytic H2 production over Gd-doped ceria from CH4/H2O mixtures for solid oxide fuel cell applications [J]. Journal of Catalysis, 2014, 316: 149-163. |
25 | Tsodikov M V, Kurdymov S S, Konstantionv G I, et al. Core-shell bifunctional catalyst for steam methane reforming resistant to H2S: activity and structure evolution [J]. Int. J. Hydrogen Energy, 2015, 40(7): 2963-2970. |
26 | Mojdeh A, Christoph P, Tobias P, et al. Experimental study of model biogas catalytic steam reforming(2): Impact of sulfur on the deactivation and regeneration of Ni-based catalysts [J]. Energy & Fuels, 2008, 22: 4190–4195. |
27 | 张钰. 正丁烷和液化石油气水蒸气重整催化剂的研制[D]. 大连: 大连理工大学, 2001. |
Zhang Y. Preparation of catalysts for steam reforming of LPG and n-butane[D]. Dalian: Dalian University of Technology, 2001. | |
28 | 张钰, 徐绍平, 韩壮, 等. 轻油水蒸气转化制城市煤气催化剂研究[J]. 煤炭转化, 2000, 23(2): 23-28. |
Zhang Y, Xu S P, Han Z. Review of catalysts for steam reforming if naphtha to city gas[J]. Coal Conversion, 2000, 23(2): 23-28. | |
29 | 刘洪梅, 蒋淇忠, 马紫峰. 丙烷二氧化碳重整制氢的研究进展[J]. 天然气化工, 2005, 30: 61-64. |
Liu H M, Jiang Q Z, Ma Z F. Research process of hydrogen production from carbon dioxide reforming of propane[J]. Natural Gas Chemical Industry, 2005, 30: 61-64. | |
30 | Barison S, Fabrizio M, Mortalò C, et al. Novel Ru/La0.75Sr0.25Cr0.5Mn0.5O3-δ catalysts for propane reforming in IT-SOFCs [J]. Solid State Ionics, 2010, 181(5/6/7): 285-291. |
31 | Nagaoka K, Sato K, Yu L. Rh/Ce0.25Zr0.75O2 catalyst for steam reforming of propane at low temperature [J]. ChemCatChem, 2019, 11: 1472-1479. |
32 | Lee K, Lee E, Song C, et al. Density functional theory study of propane steam reforming on Rh-Ni bimetallic surface: sulfur tolerance and scaling/Bronsted-Evans-Polanyi relations [J]. Journal of Catalysis, 2014, 309: 248-259. |
33 | Rangan M, Yung M M, Medlin J W. NiW and NiRu bimetallic catalysts for ethylene steam reforming: alternative mechanisms for sulfur resistance[J]. Catalysis Letters, 2012, 142(6): 718-727. |
34 | Peucheret S, Feaviour M, Stan G. Exhaust-gas reforming using precious metal catalysts [J]. Appl. Catal. B: Environ., 2006, 65(3/4): 201-206. |
35 | Wang P, Thompson L. Effect of sulfur on Mo2C-supported liquefied petroleum gas steam reforming catalysts[C]// The 2008 AIChE Annual Meeting. Catalysis and Reaction Engineering Division. Philadelphia: American Institute of Chemical Engineers, 2008: 237-238. |
36 | Sebastian J J S, Riesz C H. Sulfur-resistant catalysts for reforming propane-methods for rating catalytic activity and sulfur resistance [J]. Industrial and Engineering Chemistry, 1951, 43(4): 860-866. |
37 | Lo F M, Modafferi V, Frontera P, et al. Catalytic behavior of Ni-modified perovskite and doped ceria composite catalyst for the conversion of odorized propane to syngas [J]. Fuel Processing Technology, 2013, 113: 28-33. |
38 | Sengodan S, Lan R, Humphreys J, et al. Advances in reforming and partial oxidation of hydrocarbons for hydrogen production and fuel cell applications[J]. Renew. Sustain. Energy Rev., 2018, 82: 761–780. |
39 | Abatzoglou N, Fauteux-Lefebvre C. Review of catalytic syngas production through steam or dry reforming and partial oxidation of studied liquid compounds[J]. Wiley Interdiscip. Rev. Energy Environ., 2016, 5(2): 169-187. |
40 | Bae J, Lee S, Kim S, et al. Liquid fuel processing for hydrogen production: a review[J]. Int. J. Hydrogen Energy, 2016, 41(44): 19990–20022. |
41 | Haji S, Zhang Y, Erkey C. Atmospheric hydridesulfurization of diesel fuel using Pt/Al2O3 catalysts prepared by supercritical deposition for fuel cell applications[J]. Appl. Catal. A-Gen., 2010, 374(1/2): 1-10. |
42 | Song C. Fuel processing for low-temperature and high-temperature fuel cells: challenges, and opportunities for sustainable development in the 21st century[J]. Catalysis Today, 2002, 77(1/2): 17-49. |
43 | Mohtadi R, Lee W K, Cowan S, et al. Effects of hydrogen sulfide on the performance of a PEMFC[J]. Electrochemical and Solid State Letters, 2003, 6(12): 272-274. |
55 | Chao X, Chen Y S, Engelhard M H, et al. Comparative study on the sulfur tolerance and carbon resistance of supported noble metal catalysts in steam reforming of liquid hydrocarbon fuel[J]. ACS Catal., 2012, 2(6): 1127-1137. |
56 | Lakhapatri S L, Abraham M A. Deactivation due to sulfur poisoning and carbon deposition on Rh-Ni/Al2O3 catalyst during steam reforming of sulfur-doped n-hexadecane[J]. Appl. Catal. A: Gen., 2009, 64(1/2): 113-121. |
57 | Younis M N, Malaibari Z O, Ahmad W, et al. Hydrogen production through steam reforming of diesel over highly efficient promoted Ni/γ-Al2O3 catalysts containing lanthanide series (La, Ce, Eu, Pr, and Gd) promoters[J]. Energy Fuel, 2018, 32(6): 7054-7065. |
58 | Tribalis A, Panagiotou G D, Bourikas K, et al. Ni catalysts supported on modified alumina for diesel steam reforming[J]. Catalysts, 2016, 6(1): 11. |
59 | Wang L S, Murata K, Matsumura Y, et al. Lower-temperature catalytic performance of bimetallic Ni-Re/Al2O3 catalyst for gasoline reforming to produce hydrogen with the inhibition of methane formation[J]. Energy Fuel, 2006, 20(4): 1377-1381. |
60 | James J S, Zheng J, Song C S. Low-temperature steam reforming of jet fuel in the absence and presence of sulfur over Rh and Rh–Ni catalysts for fuel cells [J]. Journal of Catalysis, 2006, 238: 309-320. |
61 | Wang L, Murata K, Inaba M. Highly efficient conversion of gasoline into hydrogen on Al2O3-supported Ni-based catalysts: catalyst stability enhancement by modification with W[J]. Appl. Catal. A: Gen., 2009, 358: 264-268. |
62 | Hwanga B, Kwona H, Ko J, et al. Density functional theory study for the enhanced sulfur tolerance of Ni catalysts by surface alloying [J]. Applied Surface Science, 2018, 429: 87-94. |
63 | 薛青松. 抗硫中毒汽油/柴油重整制氢Pt催化剂的制备、表征和性能研究[D]. 上海: 华东师范大学, 2009. |
Xue Q S. Preparation, characterization and performance of sulfur-tolerant Pt-based catalysts for reforming of gasoline/diesel-fuel to produce hydrogen[D]. Shanghai: East China Normal University, 2009. | |
64 | Vita A, Italiano C, Pino L, et al. Hydrogen-rich gas production by steam reforming of n-dodecane(Ⅱ): Stability, regenerability and sulfur poisoning of low loading Rh-based catalyst[J]. Appl. Cata. B-Environ., 2017, 218: 317-326. |
65 | Chao X, Chen Y S, Li Y, et al. Sulfur poisoning of CeO2-Al2O3-supported mono- and bi-metallic Ni and Rh catalysts in steam reforming of liquid hydrocarbons at low and high temperatures [J]. Appl. Catal. A: Gen., 2010, 390: 210-218. |
66 | Magali F, Jennifer M, Theodore K. Effect of temperature, steam-to-carbon ratio, and alkali metal additives on improving the sulfur tolerance of a Rh/La–Al2O3 catalyst reforming gasoline for fuel cell applications [J]. Appl. Catal. A: Gen., 2008, 342(1/2): 69-77. |
67 | Yang X. An experimental investigation on the deactivation and regeneration of a steam reforming catalyst [J]. Renewable Energy, 2017, 112: 17-24. |
68 | Andersson K J, Skov-Skjoth R M, Hojlund N P E. Industrial-scale gas conditioning including Topsoe tar reforming and purification downstream biomass gasifiers: an overview and recent examples [J]. Fule, 2017, 203: 1026-1030. |
69 | Zheng Q, Janke C, Farrauto R. Steam reforming of sulfur-containing dodecane on a Rh-Pt catalyst: influence of process parameters on catalyst stability and coke structure [J]. Appl. Catal. B: Environ., 2014, 160/161: 525-533. |
70 | Iranshahi D, Hamedi N, Nategh M, et al. Thermal integration of sulfuric acid and continuous catalyst regeneration of naphtha reforming plants [J]. Chem. Eng. Technol., 2018, 41: 637-655. |
[1] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[2] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[3] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[4] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[5] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[6] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[7] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[8] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[9] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[10] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[11] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
[12] | 王辰, 史秀锋, 武鲜凤, 魏方佳, 张昊虹, 车寅, 吴旭. 氧化还原法制备Mn3O4催化剂及其甲苯催化氧化性能与机理研究[J]. 化工学报, 2023, 74(6): 2447-2457. |
[13] | 李勇, 高佳琦, 杜超, 赵亚丽, 李伯琼, 申倩倩, 贾虎生, 薛晋波. Ni@C@TiO2核壳双重异质结的构筑及光热催化分解水产氢[J]. 化工学报, 2023, 74(6): 2458-2467. |
[14] | 周继鹏, 何文军, 李涛. 异形催化剂上乙烯催化氧化失活动力学反应工程计算[J]. 化工学报, 2023, 74(6): 2416-2426. |
[15] | 张希庆, 王琰婷, 徐彦红, 常淑玲, 孙婷婷, 薛定, 张立红. Mg量影响的纳米片负载Pt-In催化异丁烷脱氢性能[J]. 化工学报, 2023, 74(6): 2427-2435. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||