化工学报 ›› 2020, Vol. 71 ›› Issue (12): 5821-5830.doi: 10.11949/0438-1157.20200626

• 材料化学工程与纳米技术 • 上一篇    下一篇

烯丙基丝素蛋白温敏水凝胶的合成及性能研究

王勃翔1,2(),刘丽1(),李佳2,路艳华2,程德红2,靳惠宇1,周凌1   

  1. 1.上海大学材料科学与工程学院,上海 200444
    2.辽东学院辽宁省功能纺织材料重点实验室,辽宁 丹东 118003
  • 收稿日期:2020-05-21 修回日期:2020-07-08 出版日期:2020-12-05 发布日期:2020-12-05
  • 通讯作者: 刘丽 E-mail:bxwang0411@163.com;liuli2002@shu.edu.cn
  • 作者简介:王勃翔(1989—),男,博士研究生,bxwang0411@163.com
  • 基金资助:
    国家自然科学基金项目(51873084);辽宁省自然科学基金项目(2019-ZD-0533);辽宁省教育厅科学研究项目(LNSJYT201901);辽宁省自然科学重点研发项目(2019JH/10100047)

Synthesis and properties of thermosensitive hydrogel of allyl silk fibroin

WANG Boxiang1,2(),LIU Li1(),LI Jia2,LU Yanhua2,CHENG Dehong2,JIN Huiyu1,ZHOU Ling1   

  1. 1.College of Materials Science and Engineering,Shanghai University, Shanghai 200444, China
    2.Liaoning Provincial Key Laboratory of Functional Textile Materials, Eastern Liaoning University, Dandong 118003, Liaoning, China
  • Received:2020-05-21 Revised:2020-07-08 Published:2020-12-05 Online:2020-12-05
  • Contact: LIU Li E-mail:bxwang0411@163.com;liuli2002@shu.edu.cn

摘要:

为解决以柞蚕丝素蛋白(ASF)为基材的生物材料力学性能差、水溶失率高等问题,首先,以ASF为原料,烯丙基缩水甘油醚(AGE)为改性剂,在碱性条件下ASF与AGE发生亲核取代反应,形成具有反应性的烯丙基丝素蛋白(ASF-AGE);然后,以N-异丙基丙烯酰胺(NIPAAm)为单体,在不使用任何交联剂的情况下,将ASF-AGE与NIPAAm进行聚合,最终形成烯丙基丝素蛋白温敏p(ASF-AGE-NIPAAm)水凝胶。采用茚三酮比色法对ASF-AGE的氨基转化率进行测定,采用1H NMR对ASF-AGE分子结构进行表征;采用XRD、DSC、压缩测试等方法研究ASF-AGE含量对水凝胶结晶结构、温敏特性、溶失稳定性和力学性能的影响。结果表明:烯丙基双键成功引入ASF大分子链上,ASF与AGE的质量比为1∶8,温度20℃,pH=10.5,反应24 h时,得到的ASF-AGE的氨基转化率为55.21%;ASF-AGE与NIPAAm聚合形成稳定形态的水凝胶,水凝胶的LCST约为32℃,具有明显的温敏特性;ASF-AGE与NIPAAm配比为4/6时,水凝胶具有良好的溶失稳定性和综合力学性能。

关键词: 丝素蛋白, 水凝胶, 聚合, 温敏性, 弹性

Abstract:

For the sake of solving the problems of poor mechanical strength and dissolve-loss ratio of Antheraea pernyi silk fibroin (ASF), allyl silk fibroin (ASF-AGE) was synthesized through nucleophilic substitution using ASF as substrate and allyl glycidyl ether (AGE) as modifier under basic conditions. And a series of gel were manufactured though in situ polymerization using ASF-AGE and N-isopropylacrylamide (NIPAAm) monomer without any crosslinking agent. The amino conversion rate of ASF was confirmed by ninhydrin colorimetry, the molecular structure of ASF-AGE was characterized by 1H NMR and the influence of ASF-AGE content on crystal structure, temperature sensitivity, dissolution stability and mechanical properties of hydrogels were also investigated by XRD, DSC, compression test and so on. The results indicated that allyl was successfully introduced into ASF, the amino conversion rate of ASF was 55.21% when the reaction condition was 1∶8 mass ratio (ASF/AGE), T=20℃ and pH=10.5. The stable hydrogels can be obtained by ASF-AGE and NIPAAm polymerization. The hydrogels showed lower critical solution temperatures (LCST) at about 32℃, which revealed obvious thermosensitive characteristic. When the ratio of ASF-AGE to NIPAAm is 4/6, the hydrogel has good dissolution stability and comprehensive mechanical properties.

Key words: silk fibroin, hydrogel, polymerization, thermosensitivity, elasticity

中图分类号: 

  • O 636.9

表1

p(ASF-AGE-NIPAAm)凝胶制备反应条件"

样品ASF-AGE/NIPAAm质量比ASF-AGE/mgNIPAAm/mlAPS/mg5%TEMED/μl
pAGN11/952.56.30.9519
pAGN22/81055.60.8416.8
pAGN33/7157.54.90.7414.8
pAGN44/62104.20.6312.6
pAGN55/5262.53.50.5310.6

图1

丙氨酸溶液标准曲线"

图2

烯丙基丝素蛋白(ASF-AGE)制备机理"

图3

ASF(a)和ASF-AGE(b)的1H NMR谱图"

图4

ASF-AGE的凝胶化现象(a); 线性PNIPAAm温敏特性(b)"

图5

p(ASF-AGE-NIPAAm)水凝胶形成过程"

图6

ASF和ASF-AGE(a)以及不同ASF-AGE含量p(ASF-AGE-NIPAAm)水凝胶(b)的XRD谱图"

图7

不同ASF-AGE含量的p(ASF-AGE-NIPAAm)水凝胶DSC曲线"

图8

PNIPAAm水凝胶可逆溶胀-收缩过程"

图9

p(ASF-AGE-NIPAAm)水凝胶不同温度下的ESR曲线(a)和ESR对温度的微分曲线(b)"

图10

不同ASF-AGE含量p(ASF-AGE-NIPAAm)水凝胶的水溶失率"

图11

不同ASF-AGE含量p(ASF-AGE-NIPAAm)水凝胶的应力-应变曲线(a)和弹性模量(b)"

1 Chen Y S, Tsou P C, Lo J M, et al. Poly(N-isopropylacrylamide) hydrogels with interpenetrating multiwalled carbon nanotubes for cell sheet engineering[J]. Biomaterials, 2013, 34(30): 7328-7334.
2 Nagase K, Yamato M, Kanazawa H, et al. Poly(N-isopropylacrylamide)-based thermoresponsive surfaces provide new types of biomedical applications[J]. Biomaterials, 2018, 153: 27-48.
3 Hu X, Cebe P, Weiss A S, et al. Protein-based composite materials[J]. Materials Today, 2012, 15(5): 208-215.
4 Zhang Y Q. Natural silk fibroin as a support for enzyme immobilization[J]. Biotechnology Advances, 1998, 16(5): 961-971.
5 Wang P, Qi C L, Yu Y Y, et al. Covalent immobilization of catalase onto regenerated silk fibroins via tyrosinase-catalyzed cross-linking[J]. Applied Biochemistry & Biotechnology, 2015, 177(2): 472-485.
6 Lee K H, Ki C S, Baek D H, et al. Application of electrospun silk fibroin nanofibers as an immobilization support of enzyme[J]. Fibers and Polymers, 2005, 6(3): 181-185.
7 Wu M H, Zhu L, Zhou Z Z, et al. Coimmobilization of naringinases on silk fibroin nanoparticles and its application in food packaging[J]. Journal of Nanoparticles, 2013, (2013): 901401.
8 Yang B S, Li J, Wang H. Research progress in sequences comparison and crystal structure of silk fibroin[J]. Advanced Materials Research, 2013, 664: 443-448.
9 Kundu B, Kurland N E, Bano S, et al. Silk proteins for biomedical applications: bioengineering perspectives[J]. Progress in Polymer Science, 2014, 39(2): 251-267.
10 Omenetto F G, Kaplan D L. New opportunities for an ancient material[J]. Science, 2010, 329(5991): 528-531.
11 Pal S, Kundu J, Talukdar S, et al. An emerging functional natural silk biomaterial from the only domesticated non-mulberry silkworm Samia ricini[J]. Macromolecular Bioscience, 2013, 13(8): 1020-1035.
12 田丽, 吴明华, 邢幽芳. 异氰酸酯基封端聚醚改性聚硅氧烷在真丝抗皱整理中的应用[J]. 丝绸, 2019, 56(5): 1-7.
Tian L, Wu M H, Xing Y F. Application of polysiloxane modified by isocyanate terminated polyether in silk anti-wrinkle finishing[J]. Journal of Silk, 2019, 56(5): 1-7.
13 Shiozaki H, Tanaka Y. Reactivity of mono-epoxides toward silk fibroin[J]. Die Makromolekulare Chemie, 1971, 143(1): 25-45.
14 Andrew C, Kyoung D S, Hyungjun Y, et al. Bulk poly(N-isopropylacrylamide) (PNIPAAm) thermoresponsive cell culture platform: toward a new horizon in cell sheet engineering [J]. Biomaterials Science, 2019, 7: 2277-2287.
15 Tourrette A, Geyter N D, Jocic D, et al. Incorporation of poly(N-isopropylacrylamide)/chitosan microgel onto plasma functionalized cotton fibre surface[J]. Colloids & Surfaces a Physicochemical & Engineering Aspects, 2009, 352(1/2/3): 126-135.
16 Heskins M, Guillet J E. Solution properties of poly(N-isopropylacrylamide)[J]. Journal of Macromolecular Science Part A Chemistry, 1968, 2(8): 1441-1455.
17 Tong X, Yang F. Engineering interpenetrating network hydrogels as biomimetic cell niche with independently tunable biochemical and mechanical properties[J]. Biomaterials, 2014, 35(6): 1807-1815.
18 Akimoto J, Nakayama M, Okano T. Temperature-responsive polymeric micelles for optimizing drug targeting to solid tumors[J]. Journal of Controlled Release, 2014, 193: 2-8.
19 Aya A, Erika N, Kenichi N, et al. Mesenchylmal stem cell culture on poly(N-isopropylacrylamide) hydrogel with repeated thermo-stimulation[J]. International Journal of Molecular Sciences, 2018, 19(4): 1253-1263.
20 Sung H W, Cheng W H, Chiu I S, et al. Studies on epoxy compound fixation[J]. Journal of Biomedical Materials Research, 1996, 33(3): 177-186.
21 余喜讯, 万昌秀, 陈槐卿. 生物性组织工程血管支架的制备及其内皮化研究[J]. 四川大学学报(自然科学版), 2005, 37(6): 97-101.
Yu X X, Wan C X, Chen H Q. Preparation of biological tissues scaffold for tissue-engineered blood vessel and its endothelializa[J]. Journal of Sichuan University (Engineering Science Edition), 2005, 37(6): 97-101.
22 Zeeman R, Dijkstra P J, Wachem P B V, et al. Crosslinking and modification of dermal sheep collagen using 1, 4-butanediol diglycidyl ether[J]. Journal of Biomedical Materials Research, 1999, 46(3): 424-433.
23 Silva S S, Kundu B, Lu S, et al. Chinese oak tasar silkworm Antheraea pernyi silk proteins: current strategies and future perspectives for biomedical applications [J]. Macromolecular Bioscience, 2019, 19(3): 1800252.
24 Gil E S, Park S H, Tien L W, et al. Mechanically robust, rapidly actuating, and biologically functionalized macroporous poly(N-isopropylacrylamide)/silk hybrid hydrogels[J]. Langmuir, 2010, 26(19): 15614-15624.
25 Zhang J N, Cui Z F, Field R, et al. Thermo-responsive microcarriers based on poly(N-isopropylacrylamide)[J]. European Polymer Journal, 2015, 67: 346-364.
26 Zhang P, Wang W. Preparation of silk fibroin-chitosan scaffolds and their properties [J]. Chinese Journal of Reparative & Reconstructive Surgery, 2013, 27(12): 1517-1522.
27 Discher D E, Janmey P, Wang Y L. Tissue cells feel and respond to the stiffness of their substrate[J]. Science, 2005, 310: 1139-1143.
28 Rennerfeldt D A, Renth A N, Talata Z, et al. Tuning mechanical performance of poly(ethylene glycol) and agarose interpenetrating network hydrogels for cartilage tissue engineering[J]. Biomaterials, 2013, 34(33): 8241-8257.
29 Baek K, Clay N E, Qin E C, et al. In situ assembly of the collagen-polyacrylamide interpenetrating network hydrogel: enabling decoupled control of stiffness and degree of swelling [J]. European Polymer Journal, 2015, 72: 413-422.
30 Singh N, Rahatekar S S, Koziol K K, et al. Directing chondrogenesis of stem cells with specific blends of cellulose and silk [J]. Biomacromolecules, 2013, 14: 1287-1298.
31 Foss C, Merzari E, Migliaresi C, et al. Silk fibroin/hyaluronic acid 3D matrices for cartilage tissue engineering[J]. Biomacromolecules, 2013, 14(1): 38-47.
[1] 于喆淼, 王志, 生梦龙, 邢广宇, 王纪孝. 界面聚合法制备用于脱氮提纯CH4的N2优先渗透ZIF-90/聚酰胺混合基质膜[J]. 化工学报, 2022, 73(7): 3273-3286.
[2] 李文涛, 林慧娟, 钟海. 原位构建富氟SEI的凝胶电解质用于金属锂二次电池[J]. 化工学报, 2022, 73(7): 3240-3250.
[3] 范小强, 黄正梁, 孙婧元, 王靖岱, 王晓飞, 胡晓波, 韩国栋, 阳永荣, 吴文清. 气液法流化床乙烯云聚合工艺开发及产品高性能化[J]. 化工学报, 2022, 73(6): 2742-2747.
[4] 徐洁, 俞树荣, 丁雪兴, 蒋海涛, 丁俊华. 基于波箔片变形的浮动式箔片气膜密封性能分析[J]. 化工学报, 2022, 73(5): 2083-2093.
[5] 葛世轶, 杨遥, 黄正梁, 孙婧元, 王靖岱, 阳永荣. 基于静电分选解析聚乙烯颗粒生长与形貌演变[J]. 化工学报, 2022, 73(4): 1585-1596.
[6] 钟国栋, 邓超和, 王洋, 王佳韵, 王如竹. 蜂窝状水凝胶吸附床传热传质特性数值模拟及验证[J]. 化工学报, 2022, 73(3): 1083-1092.
[7] 张瑾渊, 徐娜, 贺文云, 吕耀东, 刘子璐, 张兴芳. 消防用PEO/OTAC/NaSal减阻体系的介观分子动力学分析[J]. 化工学报, 2022, 73(3): 1157-1165.
[8] 许超群, 俞娟, 范一民, 王基夫, 储富祥. 原子转移自由基聚合法接枝改性纳米纤维素及其功能化应用[J]. 化工学报, 2022, 73(3): 1022-1043.
[9] 蒋杰, 唐秋雨, 赵玲, 奚桢浩, 袁渭康. 长碳链PA1212弹性体在热环境中的分子运动和氢键研究[J]. 化工学报, 2022, 73(1): 425-433.
[10] 郑哲楠, 高翔, 罗英武, 黄杰. 紫外光交联法制备全固态聚合物电解质[J]. 化工学报, 2022, 73(1): 441-450.
[11] 孙艺, 姜润韬, 金晶, 李凯涛, 林彦军, 刘军枫, 段雪. 高分子材料阻燃与抑烟的分立设计思想[J]. 化工学报, 2022, 73(1): 18-31.
[12] 邓超和, 王佳韵, 李金凤, 刘业凤, 王如竹. 可低温驱动的凝胶复合吸附剂的制备及吸/脱附性能研究[J]. 化工学报, 2021, 72(8): 4401-4409.
[13] 崔锦,石川,赵金保. 机械压力对锂电池性能影响的研究进展[J]. 化工学报, 2021, 72(7): 3511-3523.
[14] 肖弦, 徐文昊, 沈亮, 王远鹏, 卢英华. 氧化石墨烯与剩余活性污泥聚合制备多孔碳材料及其电化学性能[J]. 化工学报, 2021, 72(7): 3869-3879.
[15] 纪荣彬, 陈婷, 彭超华, 夏龙, 陈国荣, 罗伟昂, 曾碧榕, 许一婷, 袁丛辉, 戴李宗. 有机磷/硼杂化小分子阻燃改性环氧树脂[J]. 化工学报, 2021, 72(7): 3856-3868.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!