化工学报 ›› 2020, Vol. 71 ›› Issue (12): 5821-5830.DOI: 10.11949/0438-1157.20200626
王勃翔1,2(),刘丽1(
),李佳2,路艳华2,程德红2,靳惠宇1,周凌1
收稿日期:
2020-05-21
修回日期:
2020-07-08
出版日期:
2020-12-05
发布日期:
2020-12-05
通讯作者:
刘丽
作者简介:
王勃翔(1989—),男,博士研究生,基金资助:
WANG Boxiang1,2(),LIU Li1(
),LI Jia2,LU Yanhua2,CHENG Dehong2,JIN Huiyu1,ZHOU Ling1
Received:
2020-05-21
Revised:
2020-07-08
Online:
2020-12-05
Published:
2020-12-05
Contact:
LIU Li
摘要:
为解决以柞蚕丝素蛋白(ASF)为基材的生物材料力学性能差、水溶失率高等问题,首先,以ASF为原料,烯丙基缩水甘油醚(AGE)为改性剂,在碱性条件下ASF与AGE发生亲核取代反应,形成具有反应性的烯丙基丝素蛋白(ASF-AGE);然后,以N-异丙基丙烯酰胺(NIPAAm)为单体,在不使用任何交联剂的情况下,将ASF-AGE与NIPAAm进行聚合,最终形成烯丙基丝素蛋白温敏p(ASF-AGE-NIPAAm)水凝胶。采用茚三酮比色法对ASF-AGE的氨基转化率进行测定,采用1H NMR对ASF-AGE分子结构进行表征;采用XRD、DSC、压缩测试等方法研究ASF-AGE含量对水凝胶结晶结构、温敏特性、溶失稳定性和力学性能的影响。结果表明:烯丙基双键成功引入ASF大分子链上,ASF与AGE的质量比为1∶8,温度20℃,pH=10.5,反应24 h时,得到的ASF-AGE的氨基转化率为55.21%;ASF-AGE与NIPAAm聚合形成稳定形态的水凝胶,水凝胶的LCST约为32℃,具有明显的温敏特性;ASF-AGE与NIPAAm配比为4/6时,水凝胶具有良好的溶失稳定性和综合力学性能。
中图分类号:
王勃翔,刘丽,李佳,路艳华,程德红,靳惠宇,周凌. 烯丙基丝素蛋白温敏水凝胶的合成及性能研究[J]. 化工学报, 2020, 71(12): 5821-5830.
WANG Boxiang,LIU Li,LI Jia,LU Yanhua,CHENG Dehong,JIN Huiyu,ZHOU Ling. Synthesis and properties of thermosensitive hydrogel of allyl silk fibroin[J]. CIESC Journal, 2020, 71(12): 5821-5830.
样品 | ASF-AGE/NIPAAm质量比 | ASF-AGE/mg | NIPAAm/ml | APS/mg | 5%TEMED/μl |
---|---|---|---|---|---|
pAGN1 | 1/9 | 52.5 | 6.3 | 0.95 | 19 |
pAGN2 | 2/8 | 105 | 5.6 | 0.84 | 16.8 |
pAGN3 | 3/7 | 157.5 | 4.9 | 0.74 | 14.8 |
pAGN4 | 4/6 | 210 | 4.2 | 0.63 | 12.6 |
pAGN5 | 5/5 | 262.5 | 3.5 | 0.53 | 10.6 |
表1 p(ASF-AGE-NIPAAm)凝胶制备反应条件
Table 1 Reaction conditions of preparation for p(ASF-AGE-NIPAAm) gel
样品 | ASF-AGE/NIPAAm质量比 | ASF-AGE/mg | NIPAAm/ml | APS/mg | 5%TEMED/μl |
---|---|---|---|---|---|
pAGN1 | 1/9 | 52.5 | 6.3 | 0.95 | 19 |
pAGN2 | 2/8 | 105 | 5.6 | 0.84 | 16.8 |
pAGN3 | 3/7 | 157.5 | 4.9 | 0.74 | 14.8 |
pAGN4 | 4/6 | 210 | 4.2 | 0.63 | 12.6 |
pAGN5 | 5/5 | 262.5 | 3.5 | 0.53 | 10.6 |
图6 ASF和ASF-AGE(a)以及不同ASF-AGE含量p(ASF-AGE-NIPAAm)水凝胶(b)的XRD谱图
Fig.6 XRD patterns of ASF and ASF-AGE (a), and p(ASF-AGE-NIPAAm) hydrogels with different ASF-AGE content (b)
图9 p(ASF-AGE-NIPAAm)水凝胶不同温度下的ESR曲线(a)和ESR对温度的微分曲线(b)
Fig.9 ESR curves (a) and integral curves (b) for p(ASF-AGE-NIPAAm) hydrogels under different temperature
图11 不同ASF-AGE含量p(ASF-AGE-NIPAAm)水凝胶的应力-应变曲线(a)和弹性模量(b)
Fig.11 Stress-strain curves (a) and elasticity modulus (b) of p(ASF-AGE-NIPAAm) hydrogels with different ASF-AGE content
1 | Chen Y S, Tsou P C, Lo J M, et al. Poly(N-isopropylacrylamide) hydrogels with interpenetrating multiwalled carbon nanotubes for cell sheet engineering[J]. Biomaterials, 2013, 34(30): 7328-7334. |
2 | Nagase K, Yamato M, Kanazawa H, et al. Poly(N-isopropylacrylamide)-based thermoresponsive surfaces provide new types of biomedical applications[J]. Biomaterials, 2018, 153: 27-48. |
3 | Hu X, Cebe P, Weiss A S, et al. Protein-based composite materials[J]. Materials Today, 2012, 15(5): 208-215. |
4 | Zhang Y Q. Natural silk fibroin as a support for enzyme immobilization[J]. Biotechnology Advances, 1998, 16(5): 961-971. |
5 | Wang P, Qi C L, Yu Y Y, et al. Covalent immobilization of catalase onto regenerated silk fibroins via tyrosinase-catalyzed cross-linking[J]. Applied Biochemistry & Biotechnology, 2015, 177(2): 472-485. |
6 | Lee K H, Ki C S, Baek D H, et al. Application of electrospun silk fibroin nanofibers as an immobilization support of enzyme[J]. Fibers and Polymers, 2005, 6(3): 181-185. |
7 | Wu M H, Zhu L, Zhou Z Z, et al. Coimmobilization of naringinases on silk fibroin nanoparticles and its application in food packaging[J]. Journal of Nanoparticles, 2013, (2013): 901401. |
8 | Yang B S, Li J, Wang H. Research progress in sequences comparison and crystal structure of silk fibroin[J]. Advanced Materials Research, 2013, 664: 443-448. |
9 | Kundu B, Kurland N E, Bano S, et al. Silk proteins for biomedical applications: bioengineering perspectives[J]. Progress in Polymer Science, 2014, 39(2): 251-267. |
10 | Omenetto F G, Kaplan D L. New opportunities for an ancient material[J]. Science, 2010, 329(5991): 528-531. |
11 | Pal S, Kundu J, Talukdar S, et al. An emerging functional natural silk biomaterial from the only domesticated non-mulberry silkworm Samia ricini[J]. Macromolecular Bioscience, 2013, 13(8): 1020-1035. |
12 | 田丽, 吴明华, 邢幽芳. 异氰酸酯基封端聚醚改性聚硅氧烷在真丝抗皱整理中的应用[J]. 丝绸, 2019, 56(5): 1-7. |
Tian L, Wu M H, Xing Y F. Application of polysiloxane modified by isocyanate terminated polyether in silk anti-wrinkle finishing[J]. Journal of Silk, 2019, 56(5): 1-7. | |
13 | Shiozaki H, Tanaka Y. Reactivity of mono-epoxides toward silk fibroin[J]. Die Makromolekulare Chemie, 1971, 143(1): 25-45. |
14 | Andrew C, Kyoung D S, Hyungjun Y, et al. Bulk poly(N-isopropylacrylamide) (PNIPAAm) thermoresponsive cell culture platform: toward a new horizon in cell sheet engineering [J]. Biomaterials Science, 2019, 7: 2277-2287. |
15 | Tourrette A, Geyter N D, Jocic D, et al. Incorporation of poly(N-isopropylacrylamide)/chitosan microgel onto plasma functionalized cotton fibre surface[J]. Colloids & Surfaces a Physicochemical & Engineering Aspects, 2009, 352(1/2/3): 126-135. |
16 | Heskins M, Guillet J E. Solution properties of poly(N-isopropylacrylamide)[J]. Journal of Macromolecular Science Part A Chemistry, 1968, 2(8): 1441-1455. |
17 | Tong X, Yang F. Engineering interpenetrating network hydrogels as biomimetic cell niche with independently tunable biochemical and mechanical properties[J]. Biomaterials, 2014, 35(6): 1807-1815. |
18 | Akimoto J, Nakayama M, Okano T. Temperature-responsive polymeric micelles for optimizing drug targeting to solid tumors[J]. Journal of Controlled Release, 2014, 193: 2-8. |
19 | Aya A, Erika N, Kenichi N, et al. Mesenchylmal stem cell culture on poly(N-isopropylacrylamide) hydrogel with repeated thermo-stimulation[J]. International Journal of Molecular Sciences, 2018, 19(4): 1253-1263. |
20 | Sung H W, Cheng W H, Chiu I S, et al. Studies on epoxy compound fixation[J]. Journal of Biomedical Materials Research, 1996, 33(3): 177-186. |
21 | 余喜讯, 万昌秀, 陈槐卿. 生物性组织工程血管支架的制备及其内皮化研究[J]. 四川大学学报(自然科学版), 2005, 37(6): 97-101. |
Yu X X, Wan C X, Chen H Q. Preparation of biological tissues scaffold for tissue-engineered blood vessel and its endothelializa[J]. Journal of Sichuan University (Engineering Science Edition), 2005, 37(6): 97-101. | |
22 | Zeeman R, Dijkstra P J, Wachem P B V, et al. Crosslinking and modification of dermal sheep collagen using 1, 4-butanediol diglycidyl ether[J]. Journal of Biomedical Materials Research, 1999, 46(3): 424-433. |
23 | Silva S S, Kundu B, Lu S, et al. Chinese oak tasar silkworm Antheraea pernyi silk proteins: current strategies and future perspectives for biomedical applications [J]. Macromolecular Bioscience, 2019, 19(3): 1800252. |
24 | Gil E S, Park S H, Tien L W, et al. Mechanically robust, rapidly actuating, and biologically functionalized macroporous poly(N-isopropylacrylamide)/silk hybrid hydrogels[J]. Langmuir, 2010, 26(19): 15614-15624. |
25 | Zhang J N, Cui Z F, Field R, et al. Thermo-responsive microcarriers based on poly(N-isopropylacrylamide)[J]. European Polymer Journal, 2015, 67: 346-364. |
26 | Zhang P, Wang W. Preparation of silk fibroin-chitosan scaffolds and their properties [J]. Chinese Journal of Reparative & Reconstructive Surgery, 2013, 27(12): 1517-1522. |
27 | Discher D E, Janmey P, Wang Y L. Tissue cells feel and respond to the stiffness of their substrate[J]. Science, 2005, 310: 1139-1143. |
28 | Rennerfeldt D A, Renth A N, Talata Z, et al. Tuning mechanical performance of poly(ethylene glycol) and agarose interpenetrating network hydrogels for cartilage tissue engineering[J]. Biomaterials, 2013, 34(33): 8241-8257. |
29 | Baek K, Clay N E, Qin E C, et al. In situ assembly of the collagen-polyacrylamide interpenetrating network hydrogel: enabling decoupled control of stiffness and degree of swelling [J]. European Polymer Journal, 2015, 72: 413-422. |
30 | Singh N, Rahatekar S S, Koziol K K, et al. Directing chondrogenesis of stem cells with specific blends of cellulose and silk [J]. Biomacromolecules, 2013, 14: 1287-1298. |
31 | Foss C, Merzari E, Migliaresi C, et al. Silk fibroin/hyaluronic acid 3D matrices for cartilage tissue engineering[J]. Biomacromolecules, 2013, 14(1): 38-47. |
[1] | 张澳, 罗英武. 低模量、高弹性、高剥离强度丙烯酸酯压敏胶[J]. 化工学报, 2023, 74(7): 3079-3092. |
[2] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[3] | 刘杰, 吴立盛, 李锦锦, 罗正鸿, 周寅宁. 含乙烯基胺酯键聚醚类可逆交联聚合物的制备及性能研究[J]. 化工学报, 2023, 74(7): 3051-3057. |
[4] | 龙臻, 王谨航, 任俊杰, 何勇, 周雪冰, 梁德青. 离子液体协同PVCap抑制天然气水合物生成实验研究[J]. 化工学报, 2023, 74(6): 2639-2646. |
[5] | 杨琴, 秦传鉴, 李明梓, 杨文晶, 赵卫杰, 刘虎. 用于柔性传感的双形状记忆MXene基水凝胶的制备及性能研究[J]. 化工学报, 2023, 74(6): 2699-2707. |
[6] | 张建华, 陈萌萌, 孙雅雯, 彭永臻. 部分短程硝化同步除磷耦合Anammox实现生活污水高效脱氮除磷[J]. 化工学报, 2023, 74(5): 2147-2156. |
[7] | 陈韶云, 徐东, 陈龙, 张禹, 张远方, 尤庆亮, 胡成龙, 陈建. 单层聚苯胺微球阵列结构的制备及其吸附性能[J]. 化工学报, 2023, 74(5): 2228-2238. |
[8] | 罗来明, 张劲, 郭志斌, 王海宁, 卢善富, 相艳. 1~5 kW高温聚合物电解质膜燃料电池堆的理论模拟与组装测试[J]. 化工学报, 2023, 74(4): 1724-1734. |
[9] | 龙臻, 王谨航, 何勇, 梁德青. 离子液体与动力学抑制剂作用下混合气体水合物生成特性研究[J]. 化工学报, 2023, 74(4): 1703-1711. |
[10] | 吴学红, 栾林林, 陈亚南, 赵敏, 吕财, 刘勇. 可降解柔性相变薄膜的制备及其热性能[J]. 化工学报, 2023, 74(4): 1818-1826. |
[11] | 吕阳光, 左培培, 杨正金, 徐铜文. 三嗪框架聚合物膜用于有机纳滤甲醇/正己烷分离[J]. 化工学报, 2023, 74(4): 1598-1606. |
[12] | 刘海芹, 李博文, 凌喆, 刘亮, 俞娟, 范一民, 勇强. 羟基-炔点击化学改性半乳甘露聚糖薄膜的制备及性能研究[J]. 化工学报, 2023, 74(3): 1370-1378. |
[13] | 张雪婷, 胡激江, 赵晶, 李伯耿. 高分子量聚丙二醇在微通道反应器中的制备[J]. 化工学报, 2023, 74(3): 1343-1351. |
[14] | 徐东, 田杜, 陈龙, 张禹, 尤庆亮, 胡成龙, 陈韶云, 陈建. 聚苯胺/二氧化锰/聚吡咯复合纳米球的制备及其电化学储能性[J]. 化工学报, 2023, 74(3): 1379-1389. |
[15] | 刘润竹, 储甜甜, 张孝阿, 王成忠, 张军营. α,ω-端羟基亚苯基氟硅聚合物的合成及性能[J]. 化工学报, 2023, 74(3): 1360-1369. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 498
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 561
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||