1 |
Chen Y S, Tsou P C, Lo J M, et al. Poly(N-isopropylacrylamide) hydrogels with interpenetrating multiwalled carbon nanotubes for cell sheet engineering[J]. Biomaterials, 2013, 34(30): 7328-7334.
|
2 |
Nagase K, Yamato M, Kanazawa H, et al. Poly(N-isopropylacrylamide)-based thermoresponsive surfaces provide new types of biomedical applications[J]. Biomaterials, 2018, 153: 27-48.
|
3 |
Hu X, Cebe P, Weiss A S, et al. Protein-based composite materials[J]. Materials Today, 2012, 15(5): 208-215.
|
4 |
Zhang Y Q. Natural silk fibroin as a support for enzyme immobilization[J]. Biotechnology Advances, 1998, 16(5): 961-971.
|
5 |
Wang P, Qi C L, Yu Y Y, et al. Covalent immobilization of catalase onto regenerated silk fibroins via tyrosinase-catalyzed cross-linking[J]. Applied Biochemistry & Biotechnology, 2015, 177(2): 472-485.
|
6 |
Lee K H, Ki C S, Baek D H, et al. Application of electrospun silk fibroin nanofibers as an immobilization support of enzyme[J]. Fibers and Polymers, 2005, 6(3): 181-185.
|
7 |
Wu M H, Zhu L, Zhou Z Z, et al. Coimmobilization of naringinases on silk fibroin nanoparticles and its application in food packaging[J]. Journal of Nanoparticles, 2013, (2013): 901401.
|
8 |
Yang B S, Li J, Wang H. Research progress in sequences comparison and crystal structure of silk fibroin[J]. Advanced Materials Research, 2013, 664: 443-448.
|
9 |
Kundu B, Kurland N E, Bano S, et al. Silk proteins for biomedical applications: bioengineering perspectives[J]. Progress in Polymer Science, 2014, 39(2): 251-267.
|
10 |
Omenetto F G, Kaplan D L. New opportunities for an ancient material[J]. Science, 2010, 329(5991): 528-531.
|
11 |
Pal S, Kundu J, Talukdar S, et al. An emerging functional natural silk biomaterial from the only domesticated non-mulberry silkworm Samia ricini[J]. Macromolecular Bioscience, 2013, 13(8): 1020-1035.
|
12 |
田丽, 吴明华, 邢幽芳. 异氰酸酯基封端聚醚改性聚硅氧烷在真丝抗皱整理中的应用[J]. 丝绸, 2019, 56(5): 1-7.
|
|
Tian L, Wu M H, Xing Y F. Application of polysiloxane modified by isocyanate terminated polyether in silk anti-wrinkle finishing[J]. Journal of Silk, 2019, 56(5): 1-7.
|
13 |
Shiozaki H, Tanaka Y. Reactivity of mono-epoxides toward silk fibroin[J]. Die Makromolekulare Chemie, 1971, 143(1): 25-45.
|
14 |
Andrew C, Kyoung D S, Hyungjun Y, et al. Bulk poly(N-isopropylacrylamide) (PNIPAAm) thermoresponsive cell culture platform: toward a new horizon in cell sheet engineering [J]. Biomaterials Science, 2019, 7: 2277-2287.
|
15 |
Tourrette A, Geyter N D, Jocic D, et al. Incorporation of poly(N-isopropylacrylamide)/chitosan microgel onto plasma functionalized cotton fibre surface[J]. Colloids & Surfaces a Physicochemical & Engineering Aspects, 2009, 352(1/2/3): 126-135.
|
16 |
Heskins M, Guillet J E. Solution properties of poly(N-isopropylacrylamide)[J]. Journal of Macromolecular Science Part A Chemistry, 1968, 2(8): 1441-1455.
|
17 |
Tong X, Yang F. Engineering interpenetrating network hydrogels as biomimetic cell niche with independently tunable biochemical and mechanical properties[J]. Biomaterials, 2014, 35(6): 1807-1815.
|
18 |
Akimoto J, Nakayama M, Okano T. Temperature-responsive polymeric micelles for optimizing drug targeting to solid tumors[J]. Journal of Controlled Release, 2014, 193: 2-8.
|
19 |
Aya A, Erika N, Kenichi N, et al. Mesenchylmal stem cell culture on poly(N-isopropylacrylamide) hydrogel with repeated thermo-stimulation[J]. International Journal of Molecular Sciences, 2018, 19(4): 1253-1263.
|
20 |
Sung H W, Cheng W H, Chiu I S, et al. Studies on epoxy compound fixation[J]. Journal of Biomedical Materials Research, 1996, 33(3): 177-186.
|
21 |
余喜讯, 万昌秀, 陈槐卿. 生物性组织工程血管支架的制备及其内皮化研究[J]. 四川大学学报(自然科学版), 2005, 37(6): 97-101.
|
|
Yu X X, Wan C X, Chen H Q. Preparation of biological tissues scaffold for tissue-engineered blood vessel and its endothelializa[J]. Journal of Sichuan University (Engineering Science Edition), 2005, 37(6): 97-101.
|
22 |
Zeeman R, Dijkstra P J, Wachem P B V, et al. Crosslinking and modification of dermal sheep collagen using 1, 4-butanediol diglycidyl ether[J]. Journal of Biomedical Materials Research, 1999, 46(3): 424-433.
|
23 |
Silva S S, Kundu B, Lu S, et al. Chinese oak tasar silkworm Antheraea pernyi silk proteins: current strategies and future perspectives for biomedical applications [J]. Macromolecular Bioscience, 2019, 19(3): 1800252.
|
24 |
Gil E S, Park S H, Tien L W, et al. Mechanically robust, rapidly actuating, and biologically functionalized macroporous poly(N-isopropylacrylamide)/silk hybrid hydrogels[J]. Langmuir, 2010, 26(19): 15614-15624.
|
25 |
Zhang J N, Cui Z F, Field R, et al. Thermo-responsive microcarriers based on poly(N-isopropylacrylamide)[J]. European Polymer Journal, 2015, 67: 346-364.
|
26 |
Zhang P, Wang W. Preparation of silk fibroin-chitosan scaffolds and their properties [J]. Chinese Journal of Reparative & Reconstructive Surgery, 2013, 27(12): 1517-1522.
|
27 |
Discher D E, Janmey P, Wang Y L. Tissue cells feel and respond to the stiffness of their substrate[J]. Science, 2005, 310: 1139-1143.
|
28 |
Rennerfeldt D A, Renth A N, Talata Z, et al. Tuning mechanical performance of poly(ethylene glycol) and agarose interpenetrating network hydrogels for cartilage tissue engineering[J]. Biomaterials, 2013, 34(33): 8241-8257.
|
29 |
Baek K, Clay N E, Qin E C, et al. In situ assembly of the collagen-polyacrylamide interpenetrating network hydrogel: enabling decoupled control of stiffness and degree of swelling [J]. European Polymer Journal, 2015, 72: 413-422.
|
30 |
Singh N, Rahatekar S S, Koziol K K, et al. Directing chondrogenesis of stem cells with specific blends of cellulose and silk [J]. Biomacromolecules, 2013, 14: 1287-1298.
|
31 |
Foss C, Merzari E, Migliaresi C, et al. Silk fibroin/hyaluronic acid 3D matrices for cartilage tissue engineering[J]. Biomacromolecules, 2013, 14(1): 38-47.
|