化工学报 ›› 2020, Vol. 71 ›› Issue (11): 5043-5051.DOI: 10.11949/0438-1157.20200796
程宁宁1(),曾丽花1,邓毓麟1,彭海龙1,2,黄宽1,2()
收稿日期:
2020-06-22
修回日期:
2020-09-02
出版日期:
2020-11-05
发布日期:
2020-11-05
通讯作者:
黄宽
作者简介:
程宁宁(1997—),女,硕士研究生,基金资助:
Ningning CHENG1(),Lihua ZENG1,Yulin DENG1,Hailong PENG1,2,Kuan HUANG1,2()
Received:
2020-06-22
Revised:
2020-09-02
Online:
2020-11-05
Published:
2020-11-05
Contact:
Kuan HUANG
摘要:
NH3污染问题一直是化工、环保等领域关注的重点问题,对工业尾气中的NH3进行捕集和回收具有十分重要的意义。以氯化1-乙基-3-甲基咪唑 ([Emim]Cl) 为氢键受体,苯酚、间苯二酚和间苯三酚为氢键供体,构建了一类新型酚基深共熔溶剂。详细测定了酚基深共熔溶剂在不同温度下的密度和黏度,并采用经验方程对密度和黏度数据进行了关联。此外,系统考察了酚基深共熔溶剂对NH3的吸收-解吸性能和吸收选择性,发现其具有较高的NH3吸收容量,被吸收的NH3可在加热和减压的条件下释放出来,经过多次循环NH3吸收容量基本保持不变。而酚基深共熔溶剂的CO2吸收容量则较低,因而具有优异的NH3/CO2吸收选择性。最后,借助光谱表征和量子化学计算,深入探究了NH3在酚基深共熔溶剂中吸收的相互作用机制。
中图分类号:
程宁宁,曾丽花,邓毓麟,彭海龙,黄宽. 新型酚基深共熔溶剂的物性表征及NH3捕集性能研究[J]. 化工学报, 2020, 71(11): 5043-5051.
Ningning CHENG,Lihua ZENG,Yulin DENG,Hailong PENG,Kuan HUANG. Physical properties characterizations and NH3 capture performance investigation of novel phenol-based deep eutectic solvents[J]. CIESC Journal, 2020, 71(11): 5043-5051.
溶剂 | a /(g/cm3) | b×104 /(g/(cm3?K)) | η0/(mPa·s) | D/K | T0/K |
---|---|---|---|---|---|
[Emim]Cl+苯酚 (1∶1) | 1.30369 | -6.21786 | 0.00426 | 483.8003 | 253.38626 |
[Emim]Cl+间苯二酚 (1∶1) | 1.35456 | -5.8535 | 9.68005 | 211.15308 | 253.79738 |
[Emim]Cl+间苯三酚 (1∶1) | 1.3929 | -5.51786 | 0.0002263 | 4594.81656 | 39.92557 |
[Emim]Cl+间苯三酚 (2∶1) | 1.35886 | -5.55 | 0.00226 | 2757.6287 | 89.99133 |
[Emim]Cl+间苯三酚 (3∶1) | 1.34481 | -5.57143 | 0.00118 | 3153.4094 | 65.12275 |
表1 式(2)、式(3)的参数拟合值
Table 1 Fitted parameters for Eqs. (2)—(3)
溶剂 | a /(g/cm3) | b×104 /(g/(cm3?K)) | η0/(mPa·s) | D/K | T0/K |
---|---|---|---|---|---|
[Emim]Cl+苯酚 (1∶1) | 1.30369 | -6.21786 | 0.00426 | 483.8003 | 253.38626 |
[Emim]Cl+间苯二酚 (1∶1) | 1.35456 | -5.8535 | 9.68005 | 211.15308 | 253.79738 |
[Emim]Cl+间苯三酚 (1∶1) | 1.3929 | -5.51786 | 0.0002263 | 4594.81656 | 39.92557 |
[Emim]Cl+间苯三酚 (2∶1) | 1.35886 | -5.55 | 0.00226 | 2757.6287 | 89.99133 |
[Emim]Cl+间苯三酚 (3∶1) | 1.34481 | -5.57143 | 0.00118 | 3153.4094 | 65.12275 |
[Emim]Cl+苯酚 (1∶1 ) | [Emim]Cl+间苯二酚 (1∶1) | [Emim]Cl+间苯三酚 (1∶1) | |||
---|---|---|---|---|---|
2.9 | 0.11±0.03 | 2.6 | 0.29±0.03 | 2.3 | 0.55±0.04 |
12.3 | 0.28±0.03 | 12.4 | 0.81±0.03 | 12.2 | 1.00±0.04 |
25.1 | 0.58±0.03 | 25.5 | 1.19±0.03 | 26.6 | 1.48±0.04 |
52 | 0.93±0.03 | 50.8 | 1.74±0.03 | 44.5 | 1.99±0.04 |
76.9 | 1.30±0.03 | 75.8 | 2.16±0.03 | 72.2 | 2.90±0.04 |
100.7 | 1.59±0.03 | 101.4 | 2.57±0.03 | 108.2 | 3.74±0.04 |
150 | 2.27±0.03 | 149.4 | 3.36±0.03 | 148.3 | 4.45±0.04 |
200.4 | 2.90±0.03 | 200.9 | 4.18±0.03 | 199 | 5.38±0.04 |
表2 [Emim]Cl+苯酚 (1∶1)、[Emim]Cl+间苯二酚 (1∶1)、[Emim]Cl+间苯三酚 (1∶1) 在313.2 K时对NH3的溶解度
Table 2 Solubilities of NH3 in [Emim]Cl+phenol (1∶1), [Emim]Cl+resorcinol (1∶1), [Emim]Cl+phloroglucinol (1∶1) at 313.2 K
[Emim]Cl+苯酚 (1∶1 ) | [Emim]Cl+间苯二酚 (1∶1) | [Emim]Cl+间苯三酚 (1∶1) | |||
---|---|---|---|---|---|
2.9 | 0.11±0.03 | 2.6 | 0.29±0.03 | 2.3 | 0.55±0.04 |
12.3 | 0.28±0.03 | 12.4 | 0.81±0.03 | 12.2 | 1.00±0.04 |
25.1 | 0.58±0.03 | 25.5 | 1.19±0.03 | 26.6 | 1.48±0.04 |
52 | 0.93±0.03 | 50.8 | 1.74±0.03 | 44.5 | 1.99±0.04 |
76.9 | 1.30±0.03 | 75.8 | 2.16±0.03 | 72.2 | 2.90±0.04 |
100.7 | 1.59±0.03 | 101.4 | 2.57±0.03 | 108.2 | 3.74±0.04 |
150 | 2.27±0.03 | 149.4 | 3.36±0.03 | 148.3 | 4.45±0.04 |
200.4 | 2.90±0.03 | 200.9 | 4.18±0.03 | 199 | 5.38±0.04 |
[Emim]Cl+间苯三酚 (1∶1) | [Emim]Cl+间苯三酚 (2∶1) | [Emim]Cl+间苯三酚 (3∶1) | |||
---|---|---|---|---|---|
2.3 | 0.55±0.04 | 6.1 | 0.34±0.04 | 4 | 0.18±0.04 |
12.2 | 1.00±0.04 | 13.5 | 0.56±0.04 | 11.4 | 0.43±0.04 |
26.6 | 1.48±0.04 | 26.8 | 0.91±0.04 | 24.9 | 0.74±0.04 |
44.5 | 1.99±0.04 | 50.4 | 1.39±0.04 | 50.7 | 1.19±0.04 |
72.2 | 2.90±0.04 | 77.2 | 1.88±0.04 | 75 | 1.57±0.04 |
108.2 | 3.74±0.04 | 100.1 | 2.27±0.05 | 103.1 | 1.98±0.04 |
148.3 | 4.45±0.04 | 151.6 | 3.08±0.05 | 150.4 | 2.72±0.04 |
199 | 5.38±0.04 | 199.1 | 3.83±0.05 | 200.5 | 3.43±0.04 |
表3 [Emim]Cl+间苯三酚不同比例在313.2K时对NH3的溶解度
Table 3 Solubilities of NH3 in [Emim]Cl+phloroglucinol DESs with different molar ratios at 313.2 K
[Emim]Cl+间苯三酚 (1∶1) | [Emim]Cl+间苯三酚 (2∶1) | [Emim]Cl+间苯三酚 (3∶1) | |||
---|---|---|---|---|---|
2.3 | 0.55±0.04 | 6.1 | 0.34±0.04 | 4 | 0.18±0.04 |
12.2 | 1.00±0.04 | 13.5 | 0.56±0.04 | 11.4 | 0.43±0.04 |
26.6 | 1.48±0.04 | 26.8 | 0.91±0.04 | 24.9 | 0.74±0.04 |
44.5 | 1.99±0.04 | 50.4 | 1.39±0.04 | 50.7 | 1.19±0.04 |
72.2 | 2.90±0.04 | 77.2 | 1.88±0.04 | 75 | 1.57±0.04 |
108.2 | 3.74±0.04 | 100.1 | 2.27±0.05 | 103.1 | 1.98±0.04 |
148.3 | 4.45±0.04 | 151.6 | 3.08±0.05 | 150.4 | 2.72±0.04 |
199 | 5.38±0.04 | 199.1 | 3.83±0.05 | 200.5 | 3.43±0.04 |
Entry | Solvent | T/K | NH3/CO2选择性 | 文献 | ||||
---|---|---|---|---|---|---|---|---|
1 | [Emim]Cl+间苯三酚 (1∶1) | 298.2 | 100.5 | 4.983 | 98.8 | 0.034 | 147 | 本文 |
2 | [Emim]Cl+间苯三酚 (1∶1) | 313.2 | 108.9 | 3.742 | 99.5 | 0.027 | 139 | 本文 |
3 | [Emim]Cl+间苯三酚 (1∶1) | 333.2 | 119.6 | 3.23 | 100.3 | 0.019 | 170 | 本文 |
4 | [Emim]Cl+间苯三酚 (1∶1) | 353.2 | 92.1 | 1.9 | 100.4 | 0.014 | 136 | 本文 |
5 | ChCl+urea(1∶2) | 298.2 | 95 | 2.213 | — | — | — | [ |
6 | [Bmim][BF4] | 298.4 | 128 | 0.911 | — | — | — | [ |
7 | [Bmim][PF6] | 298.0 | 174 | 1.843 | — | — | — | [ |
8 | ChCl +EG (1∶2) | 313.2 | 100.5 | 2.729 | — | — | — | [ |
9 | ChCl+Res+Gly (1∶3∶5) | 313.2 | 101.3 | 7.647 | 100 | 0.021 | 369 | [ |
10 | [bmim][MeSO3]+urea(1∶1) | 313.2 | 172.6 | 1.049 | — | — | — | [ |
11 | [Emim][SCN] | 298.2 | 101.3 | 2.642 | — | — | — | [ |
12 | ChCl+PhOH+EG (1∶5∶4) | 298.2 | 101.3 | 9.619 | 101.3 | 0.045 | 214 | [ |
13 | [EtOHmim][BF4] | 313.2 | 115.6 | 3.07 | 100 | 0.05 | 61 | [ |
14 | [EtOHmim][PF6] | 313.2 | 107.9 | 2.48 | 100 | 0.039 | 64 | [ |
表4 对比其他深共熔溶剂和离子液体对NH3或CO2的溶解度
Table 4 Comparison with other deep eutectic solvents and ionic liquids for NH3 or CO2 absorption
Entry | Solvent | T/K | NH3/CO2选择性 | 文献 | ||||
---|---|---|---|---|---|---|---|---|
1 | [Emim]Cl+间苯三酚 (1∶1) | 298.2 | 100.5 | 4.983 | 98.8 | 0.034 | 147 | 本文 |
2 | [Emim]Cl+间苯三酚 (1∶1) | 313.2 | 108.9 | 3.742 | 99.5 | 0.027 | 139 | 本文 |
3 | [Emim]Cl+间苯三酚 (1∶1) | 333.2 | 119.6 | 3.23 | 100.3 | 0.019 | 170 | 本文 |
4 | [Emim]Cl+间苯三酚 (1∶1) | 353.2 | 92.1 | 1.9 | 100.4 | 0.014 | 136 | 本文 |
5 | ChCl+urea(1∶2) | 298.2 | 95 | 2.213 | — | — | — | [ |
6 | [Bmim][BF4] | 298.4 | 128 | 0.911 | — | — | — | [ |
7 | [Bmim][PF6] | 298.0 | 174 | 1.843 | — | — | — | [ |
8 | ChCl +EG (1∶2) | 313.2 | 100.5 | 2.729 | — | — | — | [ |
9 | ChCl+Res+Gly (1∶3∶5) | 313.2 | 101.3 | 7.647 | 100 | 0.021 | 369 | [ |
10 | [bmim][MeSO3]+urea(1∶1) | 313.2 | 172.6 | 1.049 | — | — | — | [ |
11 | [Emim][SCN] | 298.2 | 101.3 | 2.642 | — | — | — | [ |
12 | ChCl+PhOH+EG (1∶5∶4) | 298.2 | 101.3 | 9.619 | 101.3 | 0.045 | 214 | [ |
13 | [EtOHmim][BF4] | 313.2 | 115.6 | 3.07 | 100 | 0.05 | 61 | [ |
14 | [EtOHmim][PF6] | 313.2 | 107.9 | 2.48 | 100 | 0.039 | 64 | [ |
298.2 K | 313.2 K | 333.2 K | 353.2 K | ||||
---|---|---|---|---|---|---|---|
1 | 0.54±0.08 | 2.3 | 0.55±0.04 | 4.4 | 0.33±0.05 | 11.1 | 0.14±0.03 |
10.2 | 1.49±0.08 | 12.2 | 1.00±0.04 | 16.4 | 0.83±0.05 | 23.1 | 0.32±0.03 |
27.6 | 2.05±0.08 | 26.6 | 1.48±0.04 | 32.4 | 1.26±0.05 | 34.1 | 0.71±0.03 |
51.2 | 3.01±0.08 | 44.5 | 1.99±0.04 | 55.4 | 1.75±0.05 | 61.8 | 1.33±0.03 |
78.7 | 4.08±0.08 | 72.2 | 2.90±0.04 | 78.4 | 2.48±0.05 | 92.1 | 1.90±0.03 |
100.1 | 4.98±0.08 | 108.2 | 3.74±0.04 | 118.4 | 3.28±0.05 | 117.1 | 2.48±0.03 |
147.6 | 6.21±0.08 | 148.3 | 4.45±0.04 | 153.4 | 4.03±0.05 | 169.1 | 3.40±0.03 |
193.1 | 7.98±0.08 | 199 | 5.38±0.04 | 210.4 | 5.00±0.05 | 219.1 | 4.17±0.03 |
表5 [Emim]Cl+间苯三酚 (1∶1) 在不同温度下对NH3的溶解度
Table 5 Solubilities of NH3 in [Emim]Cl+phloroglucinol (1∶1) at different temperatures
298.2 K | 313.2 K | 333.2 K | 353.2 K | ||||
---|---|---|---|---|---|---|---|
1 | 0.54±0.08 | 2.3 | 0.55±0.04 | 4.4 | 0.33±0.05 | 11.1 | 0.14±0.03 |
10.2 | 1.49±0.08 | 12.2 | 1.00±0.04 | 16.4 | 0.83±0.05 | 23.1 | 0.32±0.03 |
27.6 | 2.05±0.08 | 26.6 | 1.48±0.04 | 32.4 | 1.26±0.05 | 34.1 | 0.71±0.03 |
51.2 | 3.01±0.08 | 44.5 | 1.99±0.04 | 55.4 | 1.75±0.05 | 61.8 | 1.33±0.03 |
78.7 | 4.08±0.08 | 72.2 | 2.90±0.04 | 78.4 | 2.48±0.05 | 92.1 | 1.90±0.03 |
100.1 | 4.98±0.08 | 108.2 | 3.74±0.04 | 118.4 | 3.28±0.05 | 117.1 | 2.48±0.03 |
147.6 | 6.21±0.08 | 148.3 | 4.45±0.04 | 153.4 | 4.03±0.05 | 169.1 | 3.40±0.03 |
193.1 | 7.98±0.08 | 199 | 5.38±0.04 | 210.4 | 5.00±0.05 | 219.1 | 4.17±0.03 |
图6 NH3在[Emim]Cl+间苯三酚 (1∶1) 中的循环吸收 (吸收条件: 333.2 K、约100 kPa;解吸条件: 363.2 K、约0.1 kPa)
Fig.6 Recycling of NH3 absorption in [Emim]Cl+phloroglucinol (1∶1) (absorption condition: 333.2 K, about 100 kPa; desorption condition: 363.2 K, about 0.1 kPa)
298.2 K | 313.2 K | 333.2 K | 353.2 K | ||||
---|---|---|---|---|---|---|---|
51.4 | 0.021±0.005 | 51.4 | 0.015±0.005 | 49.8 | 0.007±0.004 | 50.1 | 0.005±0.004 |
98.8 | 0.034±0.005 | 100.7 | 0.027±0.005 | 100.3 | 0.019±0.005 | 100.4 | 0.014±0.004 |
149.5 | 0.053±0.005 | 150.7 | 0.040±0.005 | 149.2 | 0.031±0.005 | 150.3 | 0.022±0.004 |
198.7 | 0.068±0.005 | 201 | 0.051±0.005 | 199.5 | 0.041±0.005 | 199.7 | 0.032±0.004 |
248.3 | 0.085±0.005 | 249.7 | 0.063±0.005 | 249.3 | 0.050±0.005 | 249.7 | 0.041±0.004 |
表6 [Emim]Cl+间苯三酚 (1∶1) 在不同温度下对CO2的溶解度
Table 6 Solubilities of CO2 in [Emim]Cl+phloroglucinol (1∶1) at different temperatures
298.2 K | 313.2 K | 333.2 K | 353.2 K | ||||
---|---|---|---|---|---|---|---|
51.4 | 0.021±0.005 | 51.4 | 0.015±0.005 | 49.8 | 0.007±0.004 | 50.1 | 0.005±0.004 |
98.8 | 0.034±0.005 | 100.7 | 0.027±0.005 | 100.3 | 0.019±0.005 | 100.4 | 0.014±0.004 |
149.5 | 0.053±0.005 | 150.7 | 0.040±0.005 | 149.2 | 0.031±0.005 | 150.3 | 0.022±0.004 |
198.7 | 0.068±0.005 | 201 | 0.051±0.005 | 199.5 | 0.041±0.005 | 199.7 | 0.032±0.004 |
248.3 | 0.085±0.005 | 249.7 | 0.063±0.005 | 249.3 | 0.050±0.005 | 249.7 | 0.041±0.004 |
1 | Meng W, Zhong Q, Yun X, et al. Improvement of a global high-resolution ammonia emission inventory for combustion and industrial sources with new data from the residential and transportation sectors[J]. Environ. Sci. Technol., 2017, 51: 2821-2829. |
2 | Rahimpour M R, Asgari A. Modeling and simulation of ammonia removal from purge gases of ammonia plants using a catalytic Pd-Ag membrane reactor[J]. J. Hazard. Mater., 2008, 153: 557-565. |
3 | Travlou N A, Bandosz T J. N-Doped polymeric resin-derived porous carbons as efficient ammonia removal and detection media[J]. Carbon, 2017, 117: 228-239. |
4 | Ashtari A K, Majd A M S, Riskowski G L, et al. Removing ammonia from air with a constant pH, slightly acidic water spray wet scrubber using recycled scrubbing solution[J]. Environ. Sci. Eng., 2016, 10: 159-168. |
5 | Tao W, Ukwuani A T. Coupling thermal stripping and acid absorption for ammonia recovery from dairy manure: ammonia volatilization kinetics and effects of temperature, pH and dissolved solids content[J]. Chem. Eng. J., 2015, 280: 188-196. |
6 | Plechkova N V, Seddon K R. Applications of ionic liquids in the chemical industry[J]. Chem. Soc. Rev., 2008, 37: 123-150. |
7 | Rogers R D, Seddon K R. Ionic liquid — solvents of the future?[J]. Science, 2003, 302: 792-793. |
8 | Earle M J, Seddon K R. Ionic liquids: green solvents for the future[J]. Pure Appl. Chem., 2000, 72: 1391-1398. |
9 | Chen F F, Hang K, Fan J P, et al. Chemical solvent in chemical solvent: a class of hybrid materials for effective capture of CO2[J].AIChE J., 2018, 64(2): 632-639. |
10 | Yokozeki A, Shiflett M B. Ammonia solubilities in room-temperature ionic liquids[J]. Ind. Eng. Chem. Res., 2007, 46: 1605-1610. |
11 | Yokozeki A, Shiflett M B. Vapor-liquid equilibria of ammonia plus ionic liquid mixtures[J]. Appl. Energy, 2007, 84: 1258-1273. |
12 | Shang D W, Bai L, Zeng S J, et al. Enhanced NH3 capture by imidazolium-based protic ionic liquids with different anions and cation substituents[J]. J. Chem. Technol. Biotechnol., 2018, 93: 1228-1236. |
13 | Wang J L, Zeng S J, Huo F, et al. Metal chloride anion-based ionic liquids for efficient separation of NH3[J]. J. Cleaner Prod., 2019, 206: 661-669. |
14 | Zhang Q H, Vigier K D O, Royer S, et al. Deep eutectic solvents: syntheses, properties and applications[J]. Chem. Soc. Rev., 2012, 41: 7108-7146. |
15 | Smith E L, Abbott A P, Ryder K S, et al. Deep eutectic solvents (DESs) and their applications[J]. Chem. Rev., 2014, 114: 11060-11082. |
16 | García G, Aparicio S, Ullah R, et al. Deep eutectic solvents: physicochemical properties and gas separation applications[J]. Energy Fuels, 2015, 29: 2616-2644. |
17 | Carriazo D, Concepcion S M, Concepcion G M, et al. Deep-eutectic solvents playing multiple roles in the synthesis of polymers and related materials[J]. Chem. Soc. Rev., 2012, 41(14): 4996-5014. |
18 | Wagle D V, Zhao H, Baker G A, et al. Deep eutectic solvents: sustainable media for nanoscale and functional materials[J]. Acc. Chem. Res., 2014, 47(8): 2299-2308. |
19 | Abbott A P, Capper G, Mckenzie K J, et al. Electrodeposition of zinc-tin alloys from deep eutectic solvents based on choline chloride[J]. Electroanal. Chem., 2007, 599(2): 288-294. |
20 | Zhang K, Ren S H, Hou Y C, et al. Efficient absorption of SO2 with low-partial pressures by environmentally benign functional deep eutectic solvents[J]. J. Hazard. Mater., 2017, 324: 457-463. |
21 | Deng D S, Liu X B, Gao B. Physicochemical properties and investigation of azole-based deep eutectic solvents as efficient and reversible SO2 absorbents[J]. Ind. Eng. Chem. Res., 2017, 56: 13850-13856. |
22 | Ghaedi H, Ayoub M, Sufian S, et al. CO2 capture with the help of phosphonium-based deep eutectic solvents[J]. J. Mol. Liq., 2017, 243: 564-571. |
23 | Sun S Y, Niu Y X, Xu Q, et al. Efficient SO2 absorptions by four kinds of deep eutectic solvents based on choline chloride[J]. Ind. Eng. Chem. Res., 2015, 54: 8019-8024. |
24 | Liu F J, Chen W, Mi J X, et al. Thermodynamic and molecular insights into the absorption of H2S, CO2, and CH4 in choline chloride plus urea mixtures[J]. AIChE J., 2019, 65(5): e16574. |
25 | Akhmetshina A I, Petukhov A N, Mechergui A, et al. Evaluation of methanesulfonate-based deep eutectic solvent for ammonia sorption[J]. J. Chem. Eng. Data, 2018, 63: 1896-1904. |
26 | Duan X Z, Gao B, Zhang C, et al. Solubility and thermodynamic properties of NH3 in choline chloride-based deep eutectic solvents[J]. J. Chem. Thermodyn., 2019, 133: 79-84. |
27 | Zhong F Y, Huang K, Peng H L. Solubilities of ammonia in choline chloride plus urea at (298.2—353.2) K and (0—300) kPa [J]. J. Chem. Thermodyn., 2019, 129: 5-11. |
28 | Li Y H, Ali M C, Yang Q W, et al. Hybrid deep eutectic solvents with flexible hydrogen-bonded supramolecular networks for highly efficient uptake of NH3[J]. ChemSusChem, 2017, 10: 3368-3377. |
29 | Zhong F Y, Peng H L, Tao D J, et al. Phenol-based ternary deep eutectic solvents for highly efficient and reversible absorption of NH3[J]. ACS Sustain. Chem. Eng., 2019, 7: 3258-3266. |
30 | Zhong F Y, Zhou L S, Shen J. et al. Rational design of azole-based deep eutectic solvents for highly efficient and reversible capture of ammonia[J]. Sustain. Chem. Eng., 2019, 7(16): 14170-14179. |
31 | Li Z L, Zhong F Y, Zhou L S, et al. Deep eutectic solvents formed by N-methylacetamide and heterocyclic weak acids for highly efficient and reversible chemical absorption of ammonia[J]. Ind. Eng. Chem. Res., 2020, 59(5): 2060-2067. |
32 | Deng D S, Gao B, Zhang C, et al. Investigation of protic NH4SCN-based deep eutectic solvents as highly efficient and reversible NH3 absorbents[J]. Chem. Eng. J., 2019, 358:936-943. |
33 | Jiang W J, Zhong F Y, Liu Y, et al. Effective and reversible capture of NH3 by ethylamine hydrochloride plus glycerol deep eutectic solvents[J]. ACS Sustain. Chem. Eng., 2019, 7: 10552-10560. |
34 | Zhang J Y, Huang K. Densities and viscosities of, and NH3 solubilities in deep eutectic solvents composed of ethylamine hydrochloride and acetamide[J]. J. Chem. Thermodyn., 2019, 139: 105883. |
35 | Zhang J Y, Kong L Y, Huang K, et al. NH3 solubilities and physical properties of ethylamine hydrochloride plus urea deep eutectic solvents[J]. Journal of Chemical & Engineering Data, 2019, 9: 3821-3830. |
36 | Jiang W J, Zhong F Y, Zhou L S, et al. Chemically dual-site capture of NH3 by unprecedently low-viscous deep eutectic solvents[J]. Chem. Commun., 2020, 56(16): 2399-2402. |
37 | Huang K, Zhang X M, Hu X B, et al. Hydrophobic protic ionic liquids tethered with tertiary amine group for highly efficient and selective absorption of H2S from CO2[J]. AIChE J., 2016, 62: 4480-4490. |
38 | Huang K, Zhang X M, Zhou L S, et al. Highly efficient and selective absorption of H2S in phenolic ionic liquids: a cooperative result of anionic strong basicity and cationic hydrogen-bond donation[J]. Chem. Eng. Sci., 2017, 173: 253-263. |
39 | 曾少娟,尚大伟,余敏,等. 离子液体在氨气分离回收中的应用及展望[J].化工学报, 2019, 70(3): 791-800. |
Zeng S J, Shang D W, Yu M, et al. Applications and perspectives of NH3 separation and recovery with ionic liquids[J]. CIESC Journal, 2019, 70(3): 791-800. | |
40 | Li G H, Zhou Q, Zhang X P, et al. Solubilities of ammonia in basic imidazolium ionic liquids[J]. Fluid Phase Equilibr., 2010, 297(1): 34-39. |
41 | Li Z J, Zhang X P, Dong H F, et al. Efficient absorption of ammonia with hydroxyl-functionalized ionic liquids[J]. RSC Adv., 2015, 5: 81362-81370. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[3] | 常明慧, 王林, 苑佳佳, 曹艺飞. 盐溶液蓄能型热泵循环特性研究[J]. 化工学报, 2023, 74(S1): 329-337. |
[4] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[5] | 张化福, 童莉葛, 张振涛, 杨俊玲, 王立, 张俊浩. 机械蒸汽压缩蒸发技术研究现状与发展趋势[J]. 化工学报, 2023, 74(S1): 8-24. |
[6] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[7] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[8] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[9] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[10] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[11] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[12] | 于旭东, 李琪, 陈念粗, 杜理, 任思颖, 曾英. 三元体系KCl + CaCl2 + H2O 298.2、323.2及348.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(8): 3256-3265. |
[13] | 张曼铮, 肖猛, 闫沛伟, 苗政, 徐进良, 纪献兵. 危废焚烧处理耦合有机朗肯循环系统工质筛选与热力学优化[J]. 化工学报, 2023, 74(8): 3502-3512. |
[14] | 卫雪岩, 钱勇. 微米级铁粉燃料中低温氧化反应特性及其动力学研究[J]. 化工学报, 2023, 74(6): 2624-2638. |
[15] | 董茂林, 陈李栋, 黄六莲, 吴伟兵, 戴红旗, 卞辉洋. 酸性助水溶剂制备木质纳米纤维素及功能应用研究进展[J]. 化工学报, 2023, 74(6): 2281-2295. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||