化工学报 ›› 2020, Vol. 71 ›› Issue (10): 4773-4782.DOI: 10.11949/0438-1157.20200879
张铭(),李乐豪,李如龙,吴剑骅,苏宝根,闻光东(
),杨启炜,任其龙
收稿日期:
2020-07-03
修回日期:
2020-09-01
出版日期:
2020-10-05
发布日期:
2020-10-05
通讯作者:
闻光东
作者简介:
张铭(1989—),男,博士,基金资助:
Ming ZHANG(),Lehao LI,Rulong LI,Jianhua WU,Baogen SU,Guangdong WEN(
),Qiwei YANG,Qilong REN
Received:
2020-07-03
Revised:
2020-09-01
Online:
2020-10-05
Published:
2020-10-05
Contact:
Guangdong WEN
摘要:
生物质气化过程中副产的焦油不仅有腐蚀设备、堵塞管道等危害,而且会降低生物质气化效率,传统的物理处理与热裂解处理方法存在诸多不足。本文基于旋转弧热等离子体反应装置,以二氧化碳作为等离子介质,选取苯及苯萘混合物作为生物质焦油的模型化合物进行了气化实验,实现了向合成气的高效转化(碳收率可达到90%以上),初步显示了该路线的可行性。进一步分析了真实生物质焦油的物质组成,考察了二氧化碳等离子体对焦油的气化性能,焦油内的水分可作为气化剂,调节合成气中H2/CO的比例(0.3~1)。上述结果为生物质焦油无害化、资源化利用技术的发展提供了新的思路。
中图分类号:
张铭, 李乐豪, 李如龙, 吴剑骅, 苏宝根, 闻光东, 杨启炜, 任其龙. 二氧化碳等离子体处理生物质焦油[J]. 化工学报, 2020, 71(10): 4773-4782.
Ming ZHANG, Lehao LI, Rulong LI, Jianhua WU, Baogen SU, Guangdong WEN, Qiwei YANG, Qilong REN. Treatment of biomass tar by CO2 plasma[J]. CIESC Journal, 2020, 71(10): 4773-4782.
H2 | CO | CO2 | CH4 | C2H2 | ∑CxHy(x≥3) |
---|---|---|---|---|---|
15%~45% | 50%~80% | 0~10% | <0.01% | <0.01% | <0.01% |
表1 裂解气气相色谱分析结果
Table 1 GC analyzing results of product gas
H2 | CO | CO2 | CH4 | C2H2 | ∑CxHy(x≥3) |
---|---|---|---|---|---|
15%~45% | 50%~80% | 0~10% | <0.01% | <0.01% | <0.01% |
Concentration/% | Q出/(m3/h) | SEC/ (kW·h/m3) | H2/CO | X/% | ||||
---|---|---|---|---|---|---|---|---|
H2 | CO | CO2 | CO | H2 | ||||
0.60 | 31.1 | 68.9 | 0 | 0.84 | 0.38 | 11.0 | 0.45 | 51.8 |
0.69 | 30.3 | 69.7 | 0 | 1.04 | 0.45 | 8.94 | 0.44 | 60.9 |
0.78 | 28.2 | 71.8 | 0 | 1.23 | 0.48 | 7.76 | 0.39 | 68.6 |
0.96 | 22.9 | 77.1 | 0 | 1.73 | 0.51 | 5.96 | 0.30 | 87.3 |
1.14 | 19.5 | 79.6 | 0.91 | 1.78 | 0.44 | 6.02 | 0.24 | 83.6 |
1.23 | 18.3 | 80.2 | 1.50 | 1.66 | 0.38 | 6.53 | 0.23 | 75.1 |
表2 CO2流量对苯气化过程的影响
Table 2 Effects of CO2 flow rate on benzene gasification
Concentration/% | Q出/(m3/h) | SEC/ (kW·h/m3) | H2/CO | X/% | ||||
---|---|---|---|---|---|---|---|---|
H2 | CO | CO2 | CO | H2 | ||||
0.60 | 31.1 | 68.9 | 0 | 0.84 | 0.38 | 11.0 | 0.45 | 51.8 |
0.69 | 30.3 | 69.7 | 0 | 1.04 | 0.45 | 8.94 | 0.44 | 60.9 |
0.78 | 28.2 | 71.8 | 0 | 1.23 | 0.48 | 7.76 | 0.39 | 68.6 |
0.96 | 22.9 | 77.1 | 0 | 1.73 | 0.51 | 5.96 | 0.30 | 87.3 |
1.14 | 19.5 | 79.6 | 0.91 | 1.78 | 0.44 | 6.02 | 0.24 | 83.6 |
1.23 | 18.3 | 80.2 | 1.50 | 1.66 | 0.38 | 6.53 | 0.23 | 75.1 |
Input power/ kW | Concentration/% | Q出/(m3/h) | SEC/ (kW·h/m3) | H2/CO | X/% | |||
---|---|---|---|---|---|---|---|---|
H2 | CO | CO2 | CO | H2 | ||||
10.31 | 18.8 | 80.3 | 0.95 | 1.27 | 0.30 | 6.59 | 0.23 | 65.1 |
11.86 | 20.5 | 78.4 | 1.11 | 1.56 | 0.41 | 6.04 | 0.26 | 80.1 |
12.96 | 19.9 | 79.3 | 0.84 | 1.81 | 0.45 | 5.73 | 0.25 | 92.8 |
14.69 | 19.7 | 79.4 | 0.94 | 1.70 | 0.42 | 6.94 | 0.25 | 89.1 |
16.10 | 20.0 | 79.2 | 0.86 | 1.66 | 0.42 | 7.74 | 0.25 | 85.3 |
17.60 | 21.0 | 78.6 | 0.41 | 1.54 | 0.41 | 9.02 | 0.27 | 78.5 |
表3 输入功率对苯气化过程的影响
Table 3 Effects of input power on benzene gasification
Input power/ kW | Concentration/% | Q出/(m3/h) | SEC/ (kW·h/m3) | H2/CO | X/% | |||
---|---|---|---|---|---|---|---|---|
H2 | CO | CO2 | CO | H2 | ||||
10.31 | 18.8 | 80.3 | 0.95 | 1.27 | 0.30 | 6.59 | 0.23 | 65.1 |
11.86 | 20.5 | 78.4 | 1.11 | 1.56 | 0.41 | 6.04 | 0.26 | 80.1 |
12.96 | 19.9 | 79.3 | 0.84 | 1.81 | 0.45 | 5.73 | 0.25 | 92.8 |
14.69 | 19.7 | 79.4 | 0.94 | 1.70 | 0.42 | 6.94 | 0.25 | 89.1 |
16.10 | 20.0 | 79.2 | 0.86 | 1.66 | 0.42 | 7.74 | 0.25 | 85.3 |
17.60 | 21.0 | 78.6 | 0.41 | 1.54 | 0.41 | 9.02 | 0.27 | 78.5 |
No. | Retention time/min① | Retention time ST/min② | Compound | Molecular formula | Mole fraction/% |
---|---|---|---|---|---|
1 | 2.336 | 2.334 | 苯并呋喃 | C8H6O | 2.10 |
2 | 3.451 | 3.448 | 萘 | C10H8 | 31.52 |
3 | 4.059 | 4.065 | 2-甲基萘 | C11H10 | 6.23 |
4 | 4.142 | 4.168 | 1-甲基萘 | C11H10 | 4.24 |
5 | 4.459 | 4.445 | 联苯 | C12H10 | 1.11 |
6 | 4.713 | 4.697 | 2-乙烯基萘 | C12H10 | 0.98 |
7 | 4.810 | 4.808 | 苊烯 | C12H8 | 8.26 |
8 | 5.096 | 5.073 | 苯并呋喃 | C12H8O | 0.63 |
9 | 5.342 | 5.332 | 芴 | C13H10 | 3.92 |
10 | 6.028 | 6.016 | 菲 | C14H10 | 4.62 |
11 | 6.079 | 6.052 | 蒽 | C14H10 | 1.80 |
12 | 7.148 | 7.139 | 芘 | C16H10 | 1.92 |
表4 生物质焦油可辨识化学成分GC/MS分析结果
Table 4 Identifiable component analysis of biomass tar by GC/MS
No. | Retention time/min① | Retention time ST/min② | Compound | Molecular formula | Mole fraction/% |
---|---|---|---|---|---|
1 | 2.336 | 2.334 | 苯并呋喃 | C8H6O | 2.10 |
2 | 3.451 | 3.448 | 萘 | C10H8 | 31.52 |
3 | 4.059 | 4.065 | 2-甲基萘 | C11H10 | 6.23 |
4 | 4.142 | 4.168 | 1-甲基萘 | C11H10 | 4.24 |
5 | 4.459 | 4.445 | 联苯 | C12H10 | 1.11 |
6 | 4.713 | 4.697 | 2-乙烯基萘 | C12H10 | 0.98 |
7 | 4.810 | 4.808 | 苊烯 | C12H8 | 8.26 |
8 | 5.096 | 5.073 | 苯并呋喃 | C12H8O | 0.63 |
9 | 5.342 | 5.332 | 芴 | C13H10 | 3.92 |
10 | 6.028 | 6.016 | 菲 | C14H10 | 4.62 |
11 | 6.079 | 6.052 | 蒽 | C14H10 | 1.80 |
12 | 7.148 | 7.139 | 芘 | C16H10 | 1.92 |
Concentration/% | Q出/(m3/h) | SEC/ (kW·h/m3) | H2/CO | ||||
---|---|---|---|---|---|---|---|
H2 | CO | CO2 | CO | H2 | |||
0.43 | 30.8 | 69.2 | 0 | 0.67 | 0.30 | 14.1 | 0.44 |
0.51 | 30.2 | 69.8 | 0 | 0.87 | 0.38 | 10.9 | 0.43 |
0.60 | 26.0 | 72.8 | 1.26 | 1.02 | 0.36 | 9.83 | 0.36 |
0.69 | 24.7 | 70.5 | 4.81 | 1.10 | 0.39 | 9.13 | 0.35 |
0.86 | 20.6 | 74.3 | 5.05 | 1.21 | 0.34 | 8.80 | 0.28 |
0.95 | 17.8 | 73.9 | 8.34 | 1.19 | 0.29 | 9.22 | 0.24 |
表5 CO2流量对焦油-苯混合物气化过程的影响
Table 5 Effects of CO2 flow rate on the gasification of the mixture of biomass tar and benzene
Concentration/% | Q出/(m3/h) | SEC/ (kW·h/m3) | H2/CO | ||||
---|---|---|---|---|---|---|---|
H2 | CO | CO2 | CO | H2 | |||
0.43 | 30.8 | 69.2 | 0 | 0.67 | 0.30 | 14.1 | 0.44 |
0.51 | 30.2 | 69.8 | 0 | 0.87 | 0.38 | 10.9 | 0.43 |
0.60 | 26.0 | 72.8 | 1.26 | 1.02 | 0.36 | 9.83 | 0.36 |
0.69 | 24.7 | 70.5 | 4.81 | 1.10 | 0.39 | 9.13 | 0.35 |
0.86 | 20.6 | 74.3 | 5.05 | 1.21 | 0.34 | 8.80 | 0.28 |
0.95 | 17.8 | 73.9 | 8.34 | 1.19 | 0.29 | 9.22 | 0.24 |
含水率/% | Concentration/% | SEC/ (kW·h/m3) | H2/CO | |||
---|---|---|---|---|---|---|
H2 | CO | CO2 | ||||
13.3 | 0.69 | 24.7 | 70.5 | 4.81 | 9.13 | 0.35 |
27.1 | 0.43 | 37.3 | 61.9 | 0.81 | 8.88 | 0.60 |
46.0 | 0.43 | 42.8 | 53.7 | 3.58 | 9.11 | 0.80 |
表6 不同含水率混合物的最优结果对比
Table 6 Comparison of optimal gasification results among mixtures with different water contents
含水率/% | Concentration/% | SEC/ (kW·h/m3) | H2/CO | |||
---|---|---|---|---|---|---|
H2 | CO | CO2 | ||||
13.3 | 0.69 | 24.7 | 70.5 | 4.81 | 9.13 | 0.35 |
27.1 | 0.43 | 37.3 | 61.9 | 0.81 | 8.88 | 0.60 |
46.0 | 0.43 | 42.8 | 53.7 | 3.58 | 9.11 | 0.80 |
1 | 王久臣, 戴林, 田宜水, 等. 中国生物质能产业发展现状及趋势分析[J]. 农业工程学报, 2007, 23(9): 276-282. |
Wang J C, Dai L, Tian Y S, et al. Analysis of the development status and trends of biomass energy industry in China [J]. Transactions of the CSAE, 2007, 23(9): 276-282. | |
2 | 李景明, 薛梅. 中国生物质能利用现状与发展前景[J]. 农业科技管理, 2010, 29(2): 1-4. |
Li J M, Xue M. Current status and development prospects of biomass energy utilization in China [J]. Management of Agricultural Science and Technology Energy, 2010, 29(2): 1-4. | |
3 | 许小骏. 林业生物质能源发展现状及展望[J]. 山西农业科学, 2008, 36(8): 88-89. |
Xu X J. Development and prospects of forestry biological energy [J]. Journal of Shanxi Agricultural Sciences, 2008, 36(8): 88-89. | |
4 | 陈冠益, 高文学, 颜蓓蓓, 等. 生物质气化技术研究现状与发展[J]. 燃气气源与加工利用, 2006, 26(7): 20-26. |
Chen G Y, Gao W X, Yan B B, et al. Present research status and development of biomass gasification technologies [J]. Gas Source and Process and Utilization, 2006, 26(7): 20-26. | |
5 | 边轶, 刘石彩, 简相坤. 生物质热解焦油的性质与化学利用研究现状[J]. 生物质化学工程, 2011, 45(2): 51-55. |
Bian Y, Liu S C, Jian X K. The state art of view of research progress on characteristics and chemical utilization of tar from biomass pyrolysis [J]. Biomass Chemical Engineering, 2011, 45(2): 51-55. | |
6 | 鲍振博, 靳登超, 刘玉乐, 等. 生物质气化中焦油的产生及处理方法[J]. 农机化研究, 2011, 33(8): 172-176. |
Bao Z B, Jin D C, Liu Y L, et al. Generation and treatment of tar in biomass gasification gas [J]. Journal of Agricultural Mechanization Research, 2011, 33(8): 172-176. | |
7 | 吴文广, 罗永浩, 陈祎, 等. 生物质焦油净化方法研究进展[J]. 工业加热, 2008, 37(2): 1-5. |
Wu W G, Luo Y H, Chen Y, et al. The progress in tar reduction method research [J]. Industrial Heating, 2008, 37(2): 1-5. | |
8 | 袁惠新, 王宁, 付双成, 等. 生物质焦油的特性及其去除方法的研究现状[J]. 过滤与分离, 2011, (3): 45-48. |
Yuan H X, Wang N, Fu S C, et al. Research on characteristics of biomass tar and the methods of its removal [J]. Journal of Filtration & Separation, 2011, (3): 45-48. | |
9 | 吴悠, 赵立欣, 孟海波, 等. 生物质热解焦油脱除方法研究进展[J]. 化工环保, 2016, 36(1): 17-21. |
Wu Y, Zhao L X, Meng H B, et al. Research progress on removal methods of biomass pyrolysis tar[J]. Chemical Environmental Protection, 2016, 36(1): 17-21. | |
10 | 马帅, 胡笑颖, 董长青, 等. 生物质焦油模型化合物脱除研究进展[J]. 林产化学与工业, 2019, 39(4): 1-8. |
Ma S, Hu X Y, Dong C Q, et al. Research progress in the removal of biomass tar model compounds[J]. Chemistry and Industry of Forest Products. 2019, 39(4): 1-8. | |
11 | 孙云娟, 蒋剑春. 生物质气化过程中焦油的去除方法综述[J]. 生物质化学工程, 2006, 40(2): 31-35. |
Sun Y J, Jiang J C. A review of measures for tar elimination in biomass gasification processes [J]. Biomass Chemical Engineering, 2006, 40(2): 31-35. | |
12 | 鲍振博, 靳登超, 刘玉乐, 等. 生物质气化中焦油的产生及其危害性[J]. 安徽农业科学, 2011, 39(4): 2243-2244. |
Bao Z B, Jin D C, Liu Y L, et al. Tar generation and its harmfulness in the process of biomass gasification [J]. Journal of Anhui Agricultural Sciences, 2011, 39(4): 2243-2244. | |
13 | 刘玉环, 朱普琪, 王允圃, 等. 生物质气化焦油处理技术的最新研究进展[J]. 现代化工, 2013, 33(11): 24-29. |
Liu Y H, Zhu P Q, Wang Y P, et al. Advance in tar removal technology of biomass gasification [J]. Modern Chemical Industry, 2013, 33(11): 24-29. | |
14 | Rabou L. Biomass tar recycling and destruction in a CFB gasifier [J]. Fuel, 2005, 84(5): 577-581. |
15 | Seshadri K S, Shamsi A. Effects of temperature, pressure, and carrier gas on the cracking of coal tar over a char-dolomite mixture and calcined dolomite in a fixed-bed reactor [J]. Industrial & Engineering Chemistry Research, 1998, 37(10): 3830-3837. |
16 | Heo D H, Lee R, Hwang J H, et al. The effect of addition of Ca, K and Mn over Ni-based catalyst on steam reforming of toluene as model tar compound [J]. Catalysis Today, 2016, 265: 95-102. |
17 | Behnia I, Yuan Z, Charpentier P, et al. Production of methane and hydrogen via supercritical water gasification of renewable glucose at a relatively low temperature: effects of metal catalysts and supports [J]. Fuel Processing Technology, 2016, 143: 27-34. |
18 | Oh G, Park S Y, Seo M W, et al. Ni/Ru–Mn/Al2O3 catalysts for steam reforming of toluene as model biomass tar [J]. Renewable Energy, 2016, 86: 841-847. |
19 | Nestler F, Burhenne L, Amtenbrink M J, et al. Catalytic decomposition of biomass tars: the impact of wood char surface characteristics on the catalytic performance for naphthalene removal [J]. Fuel Processing Technology, 2016, 145: 31-41. |
20 | Nair S A, Pemen A J M, Yan K, et al. Tar removal from biomass-derived fuel gas by pulsed corona discharges [J]. Fuel Processing Technology, 2003, 84(1): 161-173. |
21 | Fourcault A, Marias F, Michou U. Modelling of thermal removal of tars in a high temperature stage fed by a plasma torch [J]. Biomass and Bioenergy, 2010, 34(9): 1363-1374. |
22 | Nunnally T, Tsangaris A, Rabinovich A, et al. Gliding arc plasma oxidative steam reforming of a simulated syngas containing naphthalene and toluene [J]. International Journal of Hydrogen Energy, 2014, 39(23): 11976-11989. |
23 | Chun Y N, Kim S C, Yoshikawa K. Decomposition of benzene as a surrogate tar in a gliding arc plasma [J]. Environmental Progress & Sustainable Energy, 2013, 32(3): 837-845. |
24 | Jzmroz P, Kordylewski W, Wnukowski M. Microwave plasma application in decomposition and steam reforming of model tar compounds [J]. Fuel Processing Technology, 2018, 169: 1-14. |
25 | Rodrigo M E, Manoel F M N, Argemiro S S S, et al. Tar reforming under a microwave plasma torch [J]. Energy & Fuels, 2013, 27: 1174-1181. |
26 | Zhu T, Li J, Jin Y, et al. Decomposition of benzene by non-thermal plasma processing: photocatalyst and ozone effect [J]. International Journal of Environmental Science & Technology, 2008, 5(3): 375-384. |
27 | Saleem F, Zhang K, Harvety A. Role of CO2 in the conversion of toluene as a tar surrogate in a non-thermal plasma dielectric barrier discharge reactor[J]. Energy & Fuels, 2018, 32(4): 5164-5170. |
28 | Liu L, Wang Q, Song J, et al. Dry reforming of model biomass pyrolysis products to syngas by dielectric barrier discharge plasma[J]. International Journal of Hydrogen Energy, 2018, 43(22): 10281-10293. |
29 | Saleem F, Zhang K, Harvety A. Temperature dependence of non-thermal plasma assisted hydrocracking of toluene to lower hydrocarbons in a dielectric barrier discharge reactor[J]. Chemical Engineering Journal, 2019, 356: 1062-1069. |
30 | Wang B, Yao S, Peng Y, et al. Toluene removal over TiO2-BaTiO3 catalysts in an atmospheric dielectric barrier discharge[J]. Journal of Environmental Chemical Engineering, 2018, 6(4): 3819-3826. |
31 | 王青. 微波诱导金属放电催化转化生物质焦油的研究[D]. 济南: 山东大学, 2018. |
Wang Q. Study on catalytic conversion of biomass tar by microwave induced metal discharge[D]. Jinan: Shandong University, 2018. | |
32 | 甘蓉丽, 罗光前, 许洋, 等. 低温等离子体协同铜铈催化剂脱除甲苯[J]. 化工进展, 2018, 37(9): 3416-3423. |
Gan R L, Luo G Q, Xu Y, et al. Low temperature plasma collaborative copper cerium catalyst removal of toluene[J]. Chemical Industry and Engineering Progress, 2018, 37(9): 3416-3423. | |
33 | Devi L, Ptasinski K J, Janssen F J J G, et al. Catalytic decomposition of biomass tars: use of dolomite and untreated olivine [J]. Renewable Energy, 2005, 30(4): 565-587. |
34 | Chun Y N, Kim S C, Yoshikawa K. Destruction of anthracene using a gliding arc plasma reformer [J]. Korean Journal of Chemical Engineering, 2011, 28(8): 1713-1720. |
[1] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[2] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[3] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[4] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[5] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[6] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[7] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[8] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[9] | 毛磊, 刘冠章, 袁航, 张光亚. 可捕集CO2的纳米碳酸酐酶粒子的高效制备及性能研究[J]. 化工学报, 2023, 74(6): 2589-2598. |
[10] | 蔺彩虹, 王丽, 吴瑜, 刘鹏, 杨江峰, 李晋平. 沸石中碱金属阳离子对CO2/N2O吸附分离性能的影响[J]. 化工学报, 2023, 74(5): 2013-2021. |
[11] | 周必茂, 许世森, 王肖肖, 刘刚, 李小宇, 任永强, 谭厚章. 烧嘴偏转角度对气化炉渣层分布特性的影响[J]. 化工学报, 2023, 74(5): 1939-1949. |
[12] | 葛泽峰, 吴雨青, 曾名迅, 查振婷, 马宇娜, 侯增辉, 张会岩. 灰化学成分对生物质气化特性的影响规律[J]. 化工学报, 2023, 74(5): 2136-2146. |
[13] | 李晨曦, 刘永峰, 张璐, 刘海峰, 宋金瓯, 何旭. O2/CO2氛围下正庚烷的燃烧机理研究[J]. 化工学报, 2023, 74(5): 2157-2169. |
[14] | 王皓, 唐思扬, 钟山, 梁斌. MEA吸收CO2富液解吸过程中固体颗粒表面的强化作用分析[J]. 化工学报, 2023, 74(4): 1539-1548. |
[15] | 朱兵国, 何吉祥, 徐进良, 彭斌. 冷却条件下渐扩/渐缩管内超临界压力二氧化碳的传热特性[J]. 化工学报, 2023, 74(3): 1062-1072. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 458
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 632
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||