化工学报 ›› 2021, Vol. 72 ›› Issue (1): 132-142.DOI: 10.11949/0438-1157.20201073
收稿日期:
2020-07-31
修回日期:
2020-10-13
出版日期:
2021-01-05
发布日期:
2021-01-05
通讯作者:
杨正金
作者简介:
李慧(1998—),女,硕士研究生,基金资助:
LI Hui(),YANG Zhengjin(),XU Tongwen
Received:
2020-07-31
Revised:
2020-10-13
Online:
2021-01-05
Published:
2021-01-05
Contact:
YANG Zhengjin
摘要:
高温质子交换膜燃料电池(HT-PEMFCs)因其具有催化剂CO耐受性良好,能量转化率高,水热管理简单等优点,成为了能源领域重要的研究方向之一。高温质子交换膜(HTPEM)是它的主要部件之一,分别以水、磷酸分子和咪唑分子为质子传导载体分析了目前HTPEM的研究现状,比较后得出了以磷酸为质子载体的HTPEM性能最佳的结论,指出了研究中尚存的问题,并展望了未来HTPEM可能的研究方向。
中图分类号:
李慧, 杨正金, 徐铜文. 高温质子交换膜研究进展[J]. 化工学报, 2021, 72(1): 132-142.
LI Hui, YANG Zhengjin, XU Tongwen. Research progress of high temperature proton exchange membranes[J]. CIESC Journal, 2021, 72(1): 132-142.
1 | Rosli R E, Sulong A B, Daud W R W, et al. A review of high-temperature proton exchange membrane fuel cell (HT-PEMFC) system[J]. International Journal of Hydrogen Energy, 2017, 42(14): 9293-9314. |
2 | Araya S S, Zhou F, Liso V, et al. A comprehensive review of PBI-based high temperature PEM fuel cells[J]. International Journal of Hydrogen Energy, 2016, 41(46): 21310-21344. |
3 | Shigematsu A, Yamada T, Kitagawa H. Wide control of proton conductivity in porous coordination polymers[J]. Journal of the American Chemical Society, 2011, 133(7): 2034-2036. |
4 | Bose S, Kuila T, Nguyen T X H, et al. Polymer membranes for high temperature proton exchange membrane fuel cell: recent advances and challenges[J]. Progress in Polymer Science, 2011, 36(6): 813-843. |
5 | Hori Y, Chikai T, Ida T, et al. Local structure and hydrogen bond characteristics of imidazole molecules for proton conduction in acid and base proton-conducting composite materials[J]. Physical Chemistry Chemical Physics, 2018, 20(15): 10311-10318. |
6 | Zhang J, Xie Z, Zhang J, et al. High temperature PEM fuel cells[J]. Journal of Power Sources, 2006, 160(2): 872-891. |
7 | Liu X, Li Y, Xue J, et al. Magnetic field alignment of stable proton-conducting channels in an electrolyte membrane[J]. Nature Communications, 2019, 10(1): 842-854. |
8 | Munavalli B B, Kariduraganavar M Y. Development of novel sulfonic acid functionalized zeolites incorporated composite proton exchange membranes for fuel cell application[J]. Electrochimica Acta, 2019, 296: 294-307. |
9 | Lee K H, Chu J Y, Kim A R, et al. Enhanced performance of a sulfonated poly(arylene ether ketone) block copolymer bearing pendant sulfonic acid groups for polymer electrolyte membrane fuel cells operating at 80% relative humidity[J]. ACS Applied Materials & Interfaces, 2018, 10(24): 20835-20844. |
10 | Wang J, Li P, Zhang Y, et al. Porous Nafion nanofiber composite membrane with vertical pathways for efficient through-plane proton conduction[J]. Journal of Membrane Science, 2019, 585: 157-165. |
11 | Yan E, Wang J, Jiang Z, et al. Enhanced water retention and stable dynamic water behavior of sulfonated poly(ether ether ketone) membranes under low humidity by incorporating humidity responsive double-shelled hollow spheres[J]. Journal of Materials Chemistry A, 2013, 1(38): 11762-11777. |
12 | Yin C, Li J, Zhou Y, et al. Enhancement in proton conductivity and thermal stability in Nafion membranes induced by incorporation of sulfonated carbon nanotubes[J]. ACS Applied Materials & Interfaces, 2018, 10(16): 14026-14035. |
13 | Joseph D, Büsselmann J, Harms C, et al. Porous Nafion membranes[J]. Journal of Membrane Science, 2016, 520: 723-730. |
14 | Shi S, Weber A Z, Kusoglu A. Structure/property relationship of Nafion XL composite membranes[J]. Journal of Membrane Science, 2016, 516: 123-134. |
15 | Xu G, Li J, Ma L, et al. Performance dependence of swelling-filling treated Nafion membrane on nano-structure of macromolecular filler[J]. Journal of Membrane Science, 2017, 534: 68-72. |
16 | Siracusano S, Baglio V, Nicotera I, et al. Sulfated titania as additive in Nafion membranes for water electrolysis applications[J]. International Journal of Hydrogen Energy, 2017, 42(46): 27851-27858. |
17 | Chang C H, Yang R J. Enhanced sample preconcentration in microfluidic chip using graphene oxide-Nafion membrane[J]. Microfluidics and Nanofluidics, 2016, 20(12): 168-176. |
18 | Koók L, Nemestóthy N, Bakonyi P, et al. Performance evaluation of microbial electrochemical systems operated with Nafion and supported ionic liquid membranes[J]. Chemosphere, 2017, 175: 350-355. |
19 | Maiti J, Kakati N, Woo S P, et al. Nafion® based hybrid composite membrane containing GO and dihydrogen phosphate functionalized ionic liquid for high temperature polymer electrolyte membrane fuel cell[J]. Composites Science and Technology, 2018, 155: 189-196. |
20 | Xu G, Wei Z, Li S, et al. In-situ sulfonation of targeted silica-filled Nafion for high-temperature PEM fuel cell application[J]. International Journal of Hydrogen Energy, 2019, 44(56): 29711-29716. |
21 | Litt M, Wycisk R. Poly(arylenesulfonic acids) with frozen-in free volume as hydrogen fuel cell membrane materials[J]. Polymer Reviews, 2015, 55(2): 307-329. |
22 | Si K, Dong D, Wycisk R, et al. Synthesis and characterization of poly(para-phenylene disulfonic acid), its copolymers and their n-alkylbenzene grafts as proton exchange membranes: high conductivity at low relative humidity[J]. Journal of Materials Chemistry, 2012, 22(39): 20907-20917. |
23 | Sanders D F, Smith Z P, Guo R, et al. Energy-efficient polymeric gas separation membranes for a sustainable future: a review[J]. Polymer, 2013, 54(18): 4729-4761. |
24 | Miyatake K, Chikashige Y, Higuchi E, et al. Tuned polymer electrolyte membranes based on aromatic polyethers for fuel cell applications[J]. Journal of the American Chemical Society, 2007, 129(13): 3879-3887. |
25 | Lee H F, Huang Y C, Wang P H, et al. Synthesis of highly sulfonated polyarylene ethers containing alternating aromatic units[J]. Materials Today Communications, 2015, 3: 114-121. |
26 | Moh L C H, Goods J B, Kim Y, et al. Free volume enhanced proton exchange membranes from sulfonated triptycene poly(ether ketone)[J]. Journal of Membrane Science, 2018, 549: 236-243. |
27 | Pandey R P, Thakur A K, Shahi V K. Sulfonated polyimide/acid-functionalized graphene oxide composite polymer electrolyte membranes with improved proton conductivity and water-retention properties[J]. ACS Applied Materials & Interfaces, 2014, 6(19): 16993-17002. |
28 | Ye Y, Wu X, Yao Z, et al. Metal–organic frameworks with a large breathing effect to host hydroxyl compounds for high anhydrous proton conductivity over a wide temperature range from subzero to 125℃[J]. Journal of Materials Chemistry A, 2016, 4(11): 4062-4070. |
29 | 葛亮, 伍斌, 王鑫, 等. MOFs分离膜在水系分离中的应用[J]. 化工学报, 2019, 70(10): 3748-3763. |
Ge L, Wu B, Wang X, et al. Application in water system separation of MOFs separation membranes[J]. CIESC Journal, 2019, 70(10): 3748-3763. | |
30 | Yang F, Xu G, Dou Y, et al. A flexible metal–organic framework with a high density of sulfonic acid sites for proton conduction[J]. Nature Energy, 2017, 2(11): 877-883. |
31 | Zhang B, Cao Y, Jiang S, et al. Enhanced proton conductivity of Nafion nanohybrid membrane incorporated with phosphonic acid functionalized graphene oxide at elevated temperature and low humidity[J]. Journal of Membrane Science, 2016, 518: 243-253. |
32 | Hong L, Wang B, Zhao C. Phosphoric acid doped high temperature proton exchange membranes based on comb-shaped polymers with quaternized graft architectures[J]. Applied Surface Science, 2019, 483: 785-792. |
33 | Li Q, He R, Jensen J O, et al. Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100℃[J]. Chemistry of Materials, 2003, 15(26): 4896-4915. |
34 | Qin Q, Tang Q, Li Q, et al. Incorporation of H3PO4 into three-dimensional polyacrylamide-graft-starch hydrogel frameworks for robust high-temperature proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2014, 39(9): 4447-4458. |
35 | Satheesh K B, Sana B, Mathew D, et al. Polybenzimidazole-nanocomposite membranes: enhanced proton conductivity with low content of amine-functionalized nanoparticles[J]. Polymer, 2018, 145: 434-446. |
36 | Asensio J A, Sanchez E M, Gomez R P. Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest[J]. Chemical Society Reviews, 2010, 39(8): 3210-3239. |
37 | Yang J, Xu Y, Zhou L, et al. Hydroxyl pyridine containing polybenzimidazole membranes for proton exchange membrane fuel cells[J]. Journal of Membrane Science, 2013, 446: 318-325. |
38 | Wang J, Jiang H, Xu Y, et al. Quaternized poly(aromatic ether sulfone) with siloxane crosslinking networks as high temperature proton exchange membranes[J]. Applied Surface Science, 2018, 452: 473-480. |
39 | Zhang J, Zhang J, Bai H, et al. A new high temperature polymer electrolyte membrane based on tri-functional group grafted polysulfone for fuel cell application[J]. Journal of Membrane Science, 2019, 572: 496-503. |
40 | Bai H, Peng H, Xiang Y, et al. Poly(arylene piperidine)s with phosphoric acid doping as high temperature polymer electrolyte membrane for durable, high-performance fuel cells[J]. Journal of Power Sources, 2019, 443: 227219-227227. |
41 | Tao P, Dai Y, Chen S, et al. Hyperbranched polyamidoamine modified high temperature proton exchange membranes based on PTFE reinforced blended polymers[J]. Journal of Membrane Science, 2020, 604: 118004-118013. |
42 | Wang L, Ni J, Liu D, et al. Effects of branching structures on the properties of phosphoric acid-doped polybenzimidazole as a membrane material for high-temperature proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2018, 43(34): 16694-16703. |
43 | Wang L, Wu Y, Fang M, et al. Synthesis and preparation of branched block polybenzimidazole membranes with high proton conductivity and single-cell performance for use in high temperature proton exchange membrane fuel cells[J]. Journal of Membrane Science, 2020, 602: 117981-117988. |
44 | Papadimitriou K D, Paloukis F, Neophytides S G, et al. Cross-linking of side chain unsaturated aromatic polyethers for high temperature polymer electrolyte membrane fuel cell applications[J]. Macromolecules, 2011, 44(12): 4942-4951. |
45 | Wang S, Zhao C, Ma W, et al. Silane-cross-linked polybenzimidazole with improved conductivity for high temperature proton exchange membrane fuel cells[J]. Journal of Materials Chemistry A, 2013, 1(3): 621-629. |
46 | Chen H, Han S Y, Liu R H, et al. High conductive, long-term durable, anhydrous proton conductive solid-state electrolyte based on a metal-organic framework impregnated with binary ionic liquids: synthesis, characteristic and effect of anion[J]. Journal of Power Sources, 2018, 376: 168-176. |
47 | Oshiba Y, Tomatsu J, Yamaguchi T. Thin pore-filling membrane with highly packed-acid structure for high temperature and low humidity operating polymer electrolyte fuel cells[J]. Journal of Power Sources, 2018, 394: 67-73. |
48 | Mukhopadhyay S, Das A, Jana T, et al. Fabricating a MOF material with polybenzimidazole into an efficient proton exchange membrane[J]. ACS Applied Energy Materials, 2020, 3(8): 7964-7977. |
49 | Anahidzade N, Abdolmaleki A, Dinari M, et al. Metal-organic framework anchored sulfonated poly(ether sulfone) as a high temperature proton exchange membrane for fuel cells[J]. Journal of Membrane Science, 2018, 565: 281-292. |
50 | Ranjeesh K C, Illathvalappil R, Veer S D, et al. Imidazole-linked crystalline two-dimensional polymer with ultrahigh proton-conductivity[J]. Journal of the American Chemical Society, 2019, 141(38): 14950-14954. |
51 | Tang Q, Yuan S, Cai H. High-temperature proton exchange membranes from microporous polyacrylamide caged phosphoric acid[J]. Journal of Materials Chemistry A, 2013, 1(3): 630-636. |
52 | Zhang X, Fu X, Yang S, et al. Design of sepiolite-supported ionogel-embedded composite membranes without proton carrier wastage for wide-temperature-range operation of proton exchange membrane fuel cells[J]. Journal of Materials Chemistry A, 2019, 7(25): 15288-15301. |
53 | Yang J, Liu C, Gao L, et al. Phosphoric acid doped imidazolium silane crosslinked poly(epichlorihydrin)/PTFE as high temperature proton exchange membranes[J]. RSC Advances, 2016, 6(66): 61029-61036. |
54 | Yang J, Gao L, Wang J, et al. Strengthening phosphoric acid doped polybenzimidazole membranes with siloxane networks for using as high temperature proton exchange membranes[J]. Macromolecular Chemistry and Physics, 2017, 218(10): 1700009-1700018. |
55 | Han L, Luo X, Luan X, et al. An inorganic mesoporous membrane in situ-doped with Cs2.5H0.5PW12O40 for high temperature proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2016, 41(35): 15783-15789. |
56 | Rao S S, Hande V R, Sawant S M, et al. a-ZrP nanoreinforcement overcomes the trade-off between phosphoric acid dopability and thermomechanical properties: nanocomposite HTPEM with stable fuel cell performance[J]. ACS Applied Materials & Interfaces, 2019, 11(40): 37013-37025. |
57 | Li X, Ma H, Wang P, et al. Construction of high-performance, high-temperature proton exchange membranes through incorporating SiO2 nanoparticles into novel cross-linked polybenzimidazole networks[J]. ACS Applied Materials & Interfaces, 2019, 11(34): 30735-30746. |
58 | Jung H Y, Kim S Y, Kim O, et al. Effect of the protogenic group on the phase behavior and ion transport properties of acid-bearing block copolymers[J]. Macromolecules, 2015, 48(17): 6142-6152. |
59 | Dimitrov I, Takamuku S, Jankova K, et al. Polysulfone functionalized with phosphonated poly(pentafluorostyrene) grafts for potential fuel cell applications[J]. Macromolecular Rapid Communications, 2012, 33(16): 1368-1374. |
60 | Ebrahim A L, Ghassemi H, Shahram M A, et al. Phosphonated polyimides: enhancement of proton conductivity at high temperatures and low humidity[J]. Journal of Membrane Science, 2016, 516: 74-82. |
61 | Tang H, Geng K, Hu Y, et al. Synthesis and properties of phosphonated polysulfones for durable high-temperature proton exchange membranes fuel cell[J]. Journal of Membrane Science, 2020, 605: 118107-118115. |
62 | Yang J, Aili D, Li Q, et al. Covalently cross-linked sulfone polybenzimidazole membranes with poly(vinylbenzyl chloride) for fuel cell applications[J]. ChemSusChem, 2013, 6(2): 275-282. |
63 | Satheesh K B, Sana B, Unnikrishnan G, et al. Polybenzimidazole co-polymers: their synthesis, morphology and high temperature fuel cell membrane properties[J]. Polymer Chemistry, 2020, 11(5): 1043-1054. |
64 | Mangiatordi G F, Laage D, Adamo C. Backbone effects on the charge transport in poly-imidazole membranes: a theoretical study[J]. Journal of Materials Chemistry A, 2013, 1(26): 7751-7759. |
65 | Kreuer K D, Paddison S J, Spohr E, et al. Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology[J]. Chemical Reviews, 2004, 104(10): 4637-4678. |
66 | Martwiset S, Chaisaward K, Treepet S, et al. Proton conducting membranes based on poly(acrylonitrile-co-styrene sulfonic acid) and imidazole[J]. International Journal of Hydrogen Energy, 2017, 42(10): 6918-6925. |
67 | Lee S, Ann J, Lee H, et al. Synthesis and characterization of crosslink-free highly sulfonated multi-block poly(arylene ether sulfone) multi-block membranes for fuel cells[J]. Journal of Materials Chemistry A, 2015, 3(5): 1833-1836. |
68 | Zhang Y, Zhang X, Li P, et al. Porous nanofiber composite membrane with 3D interpenetrating networks towards ultrafast and isotropic proton conduction[J]. Journal of Materials Chemistry A, 2020, 8(10): 5128-5137. |
69 | Wang L, Deng N, Wang G, et al. Constructing amino-functionalized flower-like metal-organic framework nanofibers in sulfonated poly(ether sulfone) proton exchange membrane for simultaneously enhancing interface compatibility and proton conduction[J]. ACS Applied Materials & Interfaces, 2019, 11(43): 39979-39990. |
70 | Li X, Ma H, Wang P, et al. Highly conductive and mechanically stable imidazole-rich cross-linked networks for high-temperature proton exchange membrane fuel cells[J]. Chemistry of Materials, 2020, 32(3): 1182-1191. |
71 | Yamada M, Honma I. Anhydrous proton conducting polymer electrolytes based on poly(vinylphosphonic acid)-heterocycle composite material[J]. Polymer, 2005, 46(9): 2986-2992. |
72 | Liu X, Zhang J, Zheng C, et al. Oriented proton-conductive nano-sponge-facilitated polymer electrolyte membranes[J]. Energy & Environmental Science, 2020, 13(1): 297-309. |
73 | Bai H, Wang H, Zhang J, et al. High temperature polymer electrolyte membrane achieved by grafting poly(1-vinylimidazole) on polysulfone for fuel cells application[J]. Journal of Membrane Science, 2019, 592: 117395-117402. |
74 | Guo Z, Xu X, Xiang Y, et al. New anhydrous proton exchange membranes for high-temperature fuel cells based on PVDF–PVP blended polymers[J]. Journal of Materials Chemistry A, 2015, 3(1): 148-155. |
[1] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[2] | 吴延鹏, 李晓宇, 钟乔洋. 静电纺丝纳米纤维双疏膜油性细颗粒物过滤性能实验分析[J]. 化工学报, 2023, 74(S1): 259-264. |
[3] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[4] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[5] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[6] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[7] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[8] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[9] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[10] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
[11] | 韩奎奎, 谭湘龙, 李金芝, 杨婷, 张春, 张永汾, 刘洪全, 于中伟, 顾学红. 四通道中空纤维MFI分子筛膜用于二甲苯异构体分离[J]. 化工学报, 2023, 74(6): 2468-2476. |
[12] | 蔡斌, 张效林, 罗倩, 党江涛, 左栗源, 刘欣梅. 导电薄膜材料的研究进展[J]. 化工学报, 2023, 74(6): 2308-2321. |
[13] | 陈朝光, 贾玉香, 汪锰. 以低浓度废酸驱动中和渗析脱盐的模拟与验证[J]. 化工学报, 2023, 74(6): 2486-2494. |
[14] | 顾浩, 张福建, 刘珍, 周文轩, 张鹏, 张忠强. 力电耦合作用下多孔石墨烯膜时间维度的脱盐性能及机理研究[J]. 化工学报, 2023, 74(5): 2067-2074. |
[15] | 袁子涵, 王淑彦, 邵宝力, 谢磊, 陈曦, 马一玫. 基于幂律液固曳力模型流化床内湿颗粒流动特性的研究[J]. 化工学报, 2023, 74(5): 2000-2012. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||