化工学报 ›› 2021, Vol. 72 ›› Issue (1): 216-228.DOI: 10.11949/0438-1157.20201098
收稿日期:
2020-08-03
修回日期:
2020-10-21
出版日期:
2021-01-05
发布日期:
2021-01-05
通讯作者:
吴静
作者简介:
齐娜(1997—),女,硕士研究生,基金资助:
QI Na1(),SONG Wei1,LIU Liming2,WU Jing1(
)
Received:
2020-08-03
Revised:
2020-10-21
Online:
2021-01-05
Published:
2021-01-05
Contact:
WU Jing
摘要:
C—C成键反应是有机合成中构建有机分子碳骨架的关键反应。综述了近年来生物催化Aldol、Acyloin condensation、Stetter 、Pictet-Spengler 等C—C成键反应的关键酶制剂,以及这些酶制剂催化合成β-羟基-α-氨基、α-羟基酮、1,4-二酮、β-咔啉、四氢异喹啉等精细化学品的研究进展。此外,还对生物催化C—C成键反应的应用前景进行了展望,从而扩大生物催化在化学品生产中的应用范围。
中图分类号:
齐娜, 宋伟, 刘立明, 吴静. 生物催化C—C成键反应及其应用[J]. 化工学报, 2021, 72(1): 216-228.
QI Na, SONG Wei, LIU Liming, WU Jing. Biocatalysis C—C bonding reaction and its application[J]. CIESC Journal, 2021, 72(1): 216-228.
Reaction | Enzyme | Product | Ref. | |
---|---|---|---|---|
oxidative C—C coupling | ![]() | Mtlaccase | benzo furan | [ |
![]() | EnBBE | berbenrine | [ | |
cyclization reaction | ![]() | BmSHC | hopene | [ |
Suzuki-Miyaura | ![]() | Suzukiase | Atropisomerci biaryls | [ |
Aldol | ![]() | RmFruA/ EcFucA/EcTagA/ EcRhaD | polyhydroxy compounds | [ |
![]() | AvDTA/AvLTA/StSHMTSth | β-hydroxy-α-amino | [ | |
Acyloin condensation | ![]() | ACDH/PfBAL | PAC/2-HPP | [ |
![]() | PpYerE/BsAAS | tert-α-hydroxy ketone | [ | |
Stetter | ![]() | SmPigD/HcHapD | 1,4-dicarbonyls | [ |
Pictet-Spengler | ![]() | Rs/OpSTR | β-carbolines | [ |
![]() | Tf/CjNCS | Tetrahydroisoquinolines | [ |
表1 生物催化C—C成键反应及其在合成精细化学品中的应用
Table 1 Biocatalytic C—C bond formation reaction and fine chemicals generated at the C—C bond site
Reaction | Enzyme | Product | Ref. | |
---|---|---|---|---|
oxidative C—C coupling | ![]() | Mtlaccase | benzo furan | [ |
![]() | EnBBE | berbenrine | [ | |
cyclization reaction | ![]() | BmSHC | hopene | [ |
Suzuki-Miyaura | ![]() | Suzukiase | Atropisomerci biaryls | [ |
Aldol | ![]() | RmFruA/ EcFucA/EcTagA/ EcRhaD | polyhydroxy compounds | [ |
![]() | AvDTA/AvLTA/StSHMTSth | β-hydroxy-α-amino | [ | |
Acyloin condensation | ![]() | ACDH/PfBAL | PAC/2-HPP | [ |
![]() | PpYerE/BsAAS | tert-α-hydroxy ketone | [ | |
Stetter | ![]() | SmPigD/HcHapD | 1,4-dicarbonyls | [ |
Pictet-Spengler | ![]() | Rs/OpSTR | β-carbolines | [ |
![]() | Tf/CjNCS | Tetrahydroisoquinolines | [ |
Aldolase | Acceptor | Product | Yield | Diastereo ratio |
---|---|---|---|---|
FruA | ![]() | ![]() | 35.7% | 92∶8 |
FruA | ![]() | ![]() | 23.4% | 92∶8 |
FruA | ![]() | ![]() | 2.8% | 92∶8 |
FruA | ![]() | ![]() | 4.7% | 87∶13 |
FucA | ![]() | ![]() | 35.6% | 92∶8 |
RhaD | ![]() | ![]() | 10.4% | 49∶51 |
![]() | 10.6% | |||
RhaD | ![]() | ![]() | 22.4% | 89∶11 |
表2 依赖DHAP醛缩酶绿色合成稀有糖及其衍生物
Table 2 Green synthesis of rare sugars and their derivatives by DHAP aldolase
Aldolase | Acceptor | Product | Yield | Diastereo ratio |
---|---|---|---|---|
FruA | ![]() | ![]() | 35.7% | 92∶8 |
FruA | ![]() | ![]() | 23.4% | 92∶8 |
FruA | ![]() | ![]() | 2.8% | 92∶8 |
FruA | ![]() | ![]() | 4.7% | 87∶13 |
FucA | ![]() | ![]() | 35.6% | 92∶8 |
RhaD | ![]() | ![]() | 10.4% | 49∶51 |
![]() | 10.6% | |||
RhaD | ![]() | ![]() | 22.4% | 89∶11 |
2 | Sherwood J, Clark J H, Fairlamb I J S, et al. Solvent effects in palladium catalysed cross-coupling reactions [J]. Green Chem., 2019, 21(9): 2164-2213. |
3 | Sousa A C, Piedade M F M M, Martins L O, et al. An enzymatic route to a benzocarbazole framework using bacterial cotA laccase [J]. Green Chem., 2015, 17(3): 1429-1433. |
4 | Engelmann C, Illner S, Kragl U. Laccase initiated C—C couplings: various techniques for reaction monitoring [J]. Pro. Biochem., 2015, 50(10): 1591-1599. |
5 | Hammer S C, Marjanovic A, Dominicus J M, et al. Squalene hopene cyclases are protonases for stereoselective Brønsted acid catalysis [J]. Nat. Chem. Biol., 2015, 11(2): 121-130. |
6 | Hammer S C, Syren P O, Seitz M, et al. Squalene hopene cyclases: highly promiscuous and evolvable catalysts for stereoselective C—C and C—X bond formation [J]. Curr. Opin. Chem. Biol., 2013, 17(2): 293-300. |
7 | Chatterjee A, Mallin H, Klehr J, et al. An enantioselective artificial Suzukiase based on the biotin-streptavidin technology [J]. Chem. Sci., 2016, 7(1): 673-677. |
8 | Clapes P, Garrabou X. Current trends in asymmetric synthesis with aldolases [J]. Adv. Synth. Catal., 2011, 353(13): 2263-2283. |
9 | Xuan K, Yang G, Wu Z, et al. Efficient synthesis of (3R,5S) -6-chloro -2,4,6 - trideoxyhexapyranose by using new 2-deoxy-D-ribose-5-phosphate aldolase from Streptococcus suis with moderate activity and aldehyde tolerance [J]. Pro. Biochem., 2020, 92: 113-119. |
10 | Sudar M, Vasic-Racki D, Mueller M, et al. Mathematical model of the MenD-catalyzed 1,4-addition (Stetter reaction) of alpha-ketoglutaric acid to acrylonitrile [J]. J. Biotechnol., 2018, 268: 71-80. |
11 | Eger E, Schrittwieser J, Wetzl D, et al. Asymmetric biocatalytic synthesis of 1-aryltetrahydro-beta-carbolines enabled by “substrate walking” [J]. Chem.-Eur. J., 2020, 26(69): 16281-16285. |
12 | Ligibel M, Moore C, Bruccoleri R, et al. Identification and application of threonine aldolase for synthesis of valuable alpha-amino, beta-hydroxy-building blocks [J]. BBA Proteom., 2020, 1868(2): 140323. |
13 | Mueller M, Sprenger G A, Pohl M. C—C bond formation using ThDP-dependent lyases [J].Curr. Opin. Chem. Biol., 2013, 17(2): 261-270. |
1 | Al-Smadi D, Enugala T R, Kessler V, et al. Chemical and biochemical approaches for the synthesis of substituted dihydroxybutanones and di- and tri-hydroxypentanones [J]. J. Org. Chem., 2019, 84(11): 6982-6991. |
14 | Fessner W D, Schneider A, Held H, et al. The mechanism of classⅡ, metal-dependent aldolases [J]. Angew. Chem. Int. Ed., 1996, 35(19): 2219-2221. |
15 | Dean S M, Greenberg W A, Wong C H. Recent advances in aldolase-catalyzed asymmetric synthesis [J]. Adv. Synth. Catal., 2007, 349(8/9): 1308-1320. |
16 | Breuer M, Hauer B. Carbon-carbon coupling in biotransformation [J]. Curr. Opin. Chem. Biol., 2003, 14(6): 570-576. |
17 | Roldan R, Sanchez-Moreno I, Scheidt T, et al. Breaking the dogma of aldolase specificity: simple aliphatic ketones and aldehydes are nucleophiles for fructose-6-phosphate aldolase [J]. Chem.-Eur. J., 2017, 23(21): 5005-5009. |
18 | Iturrate L, Sanchez-Moreno I, Oroz-Guinea I, et al. Preparation and characterization of a bifunctional aldolase/kinase enzyme: a more efficient biocatalyst for C—C bond formation [J]. Chem.-Eur. J., 2010, 16(13): 4018-4030. |
19 | Li A, Cai L, Chen, Z, et al. Recent advances in the synthesis of rare sugars using DHAP-dependent aldolases [J]. Carbohydrate Res., 2017, 452: 108-115. |
20 | Iqbal M W, Riaz T, Hassanin H A M, et al. Characterization of a novel D-arabinose isomerase from Thermanaeromonas toyohensis and its application for the production of D-ribulose and L-fuculose [J]. Enzyme. Micro. Tech., 2019, 131: 109427. |
21 | Sugiyama M, Hong Z, Greenberg W A, et al. In vivo selection for the directed evolution of L-rhamnulose aldolase from L-rhamnulose-1-phosphate aldolase (Rhad) [J]. Bioorg. Med. Chem., 2007, 15(17): 5905-5911. |
22 | Sanchez-Moreno I, Garcia-Garcia J F, Bastida A, et al. Multienzyme system for dihydroxyacetone phosphate-dependent aldolase catalyzed C—C bond formation from dihydroxyacetone [J]. Chem. Comm., 2004,(14): 1634-1635. |
23 | Sugiyama M, Hong Z, Liang P H, et al. D-Fructose-6-phosphate aldolase - catalyzed one-pot synthesis of iminocyclitols [J]. J. Am. Chem. Soc., 2007, 129(47): 14811-14817. |
24 | Schurmann M, Schurmann M, Sprenger G A. Fructose 6-phosphate aldolase and 1-deoxy-D-xylulose 5-phosphate synthase from Escherichia coli as tools in enzymatic synthesis of 1-deoxysugars [J]. J. Mol. Cata. B-Enzym., 2002, 19: 247-252. |
25 | Garrabou X, Castillo J A, Guerard-Helaine C, et al. Asymmetric self- and cross-aldol reactions of glycolaldehyde catalyzed by D-fructose-6-phosphate aldolase [J]. Angew. Chem. Int. Ed., 2009, 48(30): 5521-5525. |
26 | Gueclue D, Szekrenyi A, Garrabou X, et al. Minimalist protein engineering of an aldolase provokes unprecedented substrate promiscuity [J]. ACS Catal., 2016, 6(3): 1848-1852. |
27 | Junker S, Roldan R, Joosten H J, et al. Complete switch of reaction specificity of an aldolase by directed evolution in vitro: synthesis of generic aliphatic aldol products [J]. Angew. Chem. Int. Ed., 2018, 57(32): 10153-10157. |
28 | Cesnik M, Sudar M, Roldan R, et al. Model-based optimization of the enzymatic aldol addition of propanal to formaldehyde: a first step towards enzymatic synthesis of 3-hydroxybutyric acid [J]. Chem. Eng. Res. Des., 2019, 150: 140-152. |
29 | Yang X, Wu L, Li A, et al. The engineering of decamericd-fructose-6-phosphate aldolase A by combinatorial modulation of inter- and intra-subunit interactions [J]. Chem. Commun., 2020, 56(55): 7561-7564. |
30 | Schmidt N G, Eger E, Kroutil W. Building bridges: biocatalytic C—C bond formation toward multifunctional products [J]. ACS Catal., 2016, 6(7): 4286-4311. |
31 | Ma H, Engel S, Enugala T R, et al., New stereoselective biocatalysts for carboligation and retro-aldol cleavage reactions derived from D-fructose 6-phosphate aldolase [J]. Biochemistry, 2018, 57(40): 5877-5885. |
32 | Liu J Q, Odani M, Yasuoka T, et al. Gene cloning and overproduction of low-specificity D-threonine aldolase from Alcaligenes xylosoxidans and its application for production of a key intermediate for parkinsonism drug [J]. Appl. Microbiol. Bioteth., 2000, 54(1): 44-51. |
33 | Fesko K. Threonine aldolases: perspectives in engineering and screening the enzymes with enhanced substrate and stereo specificities [J]. Appl. Microbiol. Biotech., 2016, 100(6): 2579-2590. |
34 | Kataoka M, Ikemi M, Morikawa T, et al. Isolation and characterization of D-threonine aldolase, a pyridoxal-5'-phosphate-dependent enzyme from Arthrobacter sp. DK-38 [J]. Eur. J. Biochem., 1997, 248(2): 385-393. |
35 | Kataoka M, Wada M, Nishi K, et al. Purification and characterization of L-threonine aldolase from Aeromonas jandaei DK-39 [J]. FEMS Microbiol. Lett., 1997, 151(2): 245-248. |
36 | Fesko K, Strohmeier G A, Breinbauer R. Expanding the threonine aldolase toolbox for the asymmetric synthesis of tertiary alpha-amino acids [J]. Appl. Microbiol. Biotech., 2015, 99(22): 9651-9661. |
37 |
Gong L, Xu G, Cao X, et al. High-throughput screening method for directed evolution and characterization of aldol activity of D-threonine aldolase [J]. Appl. Biochem. Biotech.,2020, doi:10.1007/s12010-020-03447-y.
DOI |
38 | Vidal L, Calveras J, Clapes P, et al. Recombinant production of serine hydroxymethyl transferase from Streptococcus thermophilus and its preliminary evaluation as a biocatalyst [J]. Appl. Microbiol. Biotech., 2005, 68(4): 489-497. |
39 | Florio R, Di Salvo M L,Vivoli M, et al. Serine hydroxymethyltransferase: a model enzyme for mechanistic, structural, and evolutionary studies [J]. BBA Proteom., 2011, 1814(11): 1489-1496. |
40 | Hernandez K, Zelen I, Petrillo G, et al. Engineered L-serine hydroxymethyl transferase from streptococcus thermophilus for the synthesis of alpha, alpha - dialkyl-alpha-amino acids [J]. Angew. Chem. Int. Ed., 2015, 54(10): 3013-3017. |
41 | Hoyos P,Sinisterra J V,Molinari F, et al. Biocatalytic strategies for the asymmetric synthesis of alpha-hydroxy ketones [J]. Accounts Chem. Res., 2010, 43(2): 288-299. |
42 | Fraas S, Steinbach A K, Tabbert A, et al. Cyclohexane-1,2-dione hydrolase: a new tool to degrade alicyclic compounds [J]. J. Mol. B-Enzym., 2009, 61(1/2): 47-49. |
43 | Steinbach A K, Fraas S, Harder J, et al. Cyclohexane-1,2-dione hydrolase from Denitrifying azoarcus sp strain 22lin, a novel member of the thiamine diphosphate enzyme family [J]. J. Bacteriol., 2011, 193(23): 6760-6769. |
44 | Loschonsky S, Waltzer S, Fraas S, et al. Catalytic scope of the thiamine-dependent multifunctional enzyme cyclohexane-1,2-dione hydrolase [J]. ChemBioChem, 2014, 15(3): 389-392. |
45 | Loschonsky S, Wacker T, Waltzer S, et al. Extended reaction scope of thiamine diphosphate dependent cyclohexane-1,2-dione hydrolase: from C—C bond cleavage to C—C bond ligation [J]. Angew. Chem. Int. Ed., 2014, 53(52): 14402-14406. |
46 | Loschonsky S, Waltzer S, Brecht V, et al. Elucidation of the enantioselective cyclohexane-1,2-dione hydrolase catalyzed formation of (S)- acetoin [J]. ChemCatChem, 2014, 6(4): 969-972. |
47 | Gonzalez B, Vicuna R. Benzaldehyde lyase, a novel thiamine PPi-requiring enzyme, from Pseudomonas fluorescens biovar I [J]. J. Bacteriol., 1989, 171(5): 2401-2405. |
48 | Mosbacher T G, Mueller M, Schulz G E. Structure and mechanism of the ThDP-dependent benzaldehyde lyase from Pseudomonas fluorescens [J]. FEBS J., 2005, 272(23): 6067-6076. |
49 | Mueller C R, Perez-Sanchez M, Maria P D. Benzaldehyde lyase-catalyzed diastereoselective C—C bond formation by simultaneous carboligation and kinetic resolution [J]. Org.Biomol.Chem., 2013, 11(12): 2000-2004. |
50 | Liang Y F, Jiao N. Highly efficient C—H hydroxylation of carbonyl compounds with oxygen under mild conditions [J]. Angew. Chem. Int. Ed., 2014, 53(2): 548-552. |
51 | Lehwald P, Richter M, Roehr C, et al. Enantioselective intermolecular aldehyde-ketone cross-coupling through an enzymatic carboligation reaction [J]. Angew. Chem. Int. Ed., 2010, 49(13): 2389-2392. |
52 | Bortolini O, Giovannini P P, Maietti S, et al. An enzymatic approach to the synthesis of optically pure (3R)- and (3S)-enantiomers of green tea flavor compound 3-hydroxy-3-methylnonane-2,4-dione [J]. J. Mol. B-Enzym., 2013, 85/86: 93-98. |
53 | Hampel S, Steitz J P, Baierl A, et al. Structural and mutagenesis studies of the thiamine-dependent, ketone-accepting yere from pseudomonas protegens [J]. ChemBioChem, 2018, 19(21): 2283-2292. |
54 | Giovannini P P, Pedrini P, Venturi V, et al. Bacillus stearothermophilus acetylacetoin synthase: a new catalyst for C—C bond formation [J]. J. Mol. B-Enzym., 2010, 64(1/2): 113-117. |
55 | Giovannini P P, Mantovani M, Grandini A, et al. New acetoin reductases from Bacillus stearothermophilus: meso- and 2R,3R-butanediol as fermentation products [J]. J. Mol. Catal. B-Enzym., 2011, 69(1/2): 15-20. |
56 | Giovannini P P, Fantin G, Massi A, et al. Enzymatic diastereo- and enantioselective synthesis of alpha-alkyl-alpha,beta-dihydroxyketones [J]. Org. Biomol. Chem., 2011, 9(23): 8038-8045. |
57 | Bernacchia G, Bortolini O, De Bastiani M, et al. Enzymatic chemoselective aldehyde-ketone cross-couplings through the polarity reversal of methylacetoin [J]. Angew. Chem. Int. Ed., 2015, 54(24): 7171-7175. |
58 | Di Carmine G, Bortolini O, Massi A, et al. Enzymatic cross-benzoin-type condensation of aliphatic aldehydes: enantioselective synthesis of 1-alkyl-1-hydroxypropan-2-ones and 1-alkyl-1-hydroxybutan-2-ones [J]. Adv. Synth. Catal., 2018, 360(21): 4132-4141. |
59 | Giovannini P P, Lerin L A, Mueller M, et al. (S)-Selectivity in phenylacetyl carbinol synthesis using the wild-type enzyme acetoin: dichlorophenolindophenol oxidoreductase from Bacillus licheniformis [J]. Adv. Synth. Catal.,2016, 358(17): 2767-2776. |
60 | Christmann M. New developments in the asymmetric Stetter reaction [J]. Angew. Chem. Int. Ed., 2005, 44(18): 2632-2634. |
61 | Williamson N R, Simonsen H T, Ahmed R A A, et al. Biosynthesis of the red antibiotic, prodigiosin, in serratia: identification of a novel 2-methyl -3-N-amyl-pyrrole (map) assembly pathway, definition of the terminal condensing enzyme, and implications for undecylprodigiosin biosynthesis in streptomyces [J]. Mol. Microbiol., 2005, 56(4): 971-989. |
62 | Dresen C, Richter M, Pohl M, et al. The enzymatic asymmetric conjugate umpolung reaction [J]. Angew. Chem. Int. Ed., 2010, 49(37): 6600-6603. |
63 | Beigi M, Waltzer S, Zarei M, et al. New Stetter reactions catalyzed by thiamine diphosphate dependent mend from E. coli [J]. J.Biotechnol., 2014, 191: 64-68. |
64 | Kasparyan E, Richter M, Dresen C, et al. Asymmetric Stetter reactions catalyzed by thiamine diphosphate-dependent enzymes[J]. Appl. Microbiol. Bioteth., 2014, 98(23): 9681-9690. |
65 | Kurutsch A, Richter M, Brecht V, et al. Mend as a versatile catalyst for asymmetric synthesis[J]. J. Mol. B-Enzym., 2009, 61(1/2): 56-66. |
66 | Westphal R, Waltzer S, Mackfeld U, et al. (S)-Selective menD variants from Escherichia coli provide access to new functionalized chiral alpha-hydroxy ketones [J]. Chem. Commun., 2013, 49(20): 2061-2063. |
67 | Chrzanowska M, Grajewska A, Rozwadowska M D. Asymmetric synthesis of isoquinoline alkaloids: 2004—2015[J]. Chem. Rev., 2016, 116(19): 12369-12465. |
68 | Schapfl M, Baier S, Fries A, et al. Extended substrate range of thiamine diphosphate-dependent mend enzyme by coupling of two C—C bonding reactions [J]. Appl. Microbio. Biot., 2018, 102(19): 8359-8372. |
69 | Patil M D, Grogan G, Yun H. Biocatalyzed C—C bond formation for the production of alkaloids[J]. ChemCatChem, 2018, 10(21): 4797-4818. |
70 | Cao R, Peng W, Wang Z, et al. Beta-carboline alkaloids: biochemical and pharmacological functions[J]. Curr. Med. Chem., 2007, 14(4): 479-500. |
71 | Brown R T, Leonard J, Sleigh S K. The role of strictosidine in monoterpenoid indole alkaloid biosynthesis[J]. Phytochem., 1978,17: 899-900 |
72 | Pressnitz D, Fischereder E M, Pletz J, et al. Asymmetric synthesis of (R)-1-alkyl-substituted tetrahydro-beta-carbolines catalyzed by strictosidine synthases[J]. Angew. Chem. Int. Ed., 2018, 57(33): 10683-10687. |
73 | Eger E, Simon A, Sharma M, et al. Inverted binding of non-natural substrates in strictosidine synthase leads to a switch of stereochemical outcome in enzyme-catalyzed Pictet-Spengler reactions [J]. J. Am. Chem.Soc., 2020, 142(9): 4525-4526. |
74 | Fischereder E M, Pressnitz D, Kroutil W, et al. Stereoselective cascade to C3-methylated strictosidine derivatives employing transaminases and strictosidine synthases [J]. ACS Catal., 2016, 6(1): 23-30. |
75 | Fischereder E, Pressnitz D, Kroutil W, et al. Engineering strictosidine synthase: rational design of a small, focused circular permutation library of the beta-propeller fold enzyme [J]. Bioorg. Med. Chem., 2014, 22(20): 5633-5637. |
76 | Mori T, Hoshino S, Sahashi S, et al. Structural basis for beta-carboline alkaloid production by the microbial homodimeric enzyme McbB [J]. Chem. Biol., 2015, 22(7): 898-906. |
77 | Khan A Y, Suresh Kumar G. Natural isoquinoline alkaloids: binding aspects to functional proteins, serum albumins, hemoglobin, and lysozyme [J]. Biophy. Rev., 2015, 7(4): 407-420. |
78 | Samanani N, Facchini P J. Purification and characterization of norcoclaurine synthase - the first committed enzyme in benzylisoquinoline alkaloid biosynthesis in plants [J]. J. Biolog. Chem., 2002, 277(37): 33878-33883. |
79 | Bonamore A, Rovardi I, Gasparrini F, et al. An enzymatic, stereoselective synthesis of (S)-norcoclaurine [J]. Green Chem., 2010, 12(9): 1623-1627. |
80 | Lichman B R, Gershater M C, Lamming E D, et al. “Dopamine-first” mechanism enables the rational engineering of the norcoclaurine synthase aldehyde activity profile [J]. FEBS J., 2015, 282(6): 1137-1151. |
81 | Pesnot T, Gershater M C, Ward J M, et al. The catalytic potential of Coptis japonica NCS2 revealed — development and utilisation of a fluorescamine-based assay [J]. Adv. Synth. Catal., 2012, 354(16): 2997-3008. |
82 | Lichman B R, Zhao J, Hailes H C, et al. Enzyme catalysed pictet-spengler formation of chiral 1,1'-disubstituted- and spiro-tetrahydroisoquinolines [J]. Nat. Commun., 2017, 8: 1-9. |
83 | Fu B, Balskus E P. Discovery of C—C bond-forming and bond-breaking radical enzymes: enabling transformations for metabolic engineering [J]. Curr. Opin. Biotech., 2020, 65: 94-101. |
[1] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[2] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[3] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[4] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[5] | 孟令玎, 崇汝青, 孙菲雪, 孟子晖, 刘文芳. 改性聚乙烯膜和氧化硅固定化碳酸酐酶[J]. 化工学报, 2023, 74(8): 3472-3484. |
[6] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[7] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[8] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[9] | 陈雅鑫, 袁航, 刘冠章, 毛磊, 杨纯, 张瑞芳, 张光亚. 蛋白质纳米笼介导的酶自固定化研究进展[J]. 化工学报, 2023, 74(7): 2773-2782. |
[10] | 汤晓玲, 王嘉瑞, 朱玄烨, 郑仁朝. 基于Pickering乳液的卤醇脱卤酶催化合成手性环氧氯丙烷[J]. 化工学报, 2023, 74(7): 2926-2934. |
[11] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[12] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[13] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[14] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[15] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 471
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 921
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||