化工学报 ›› 2021, Vol. 72 ›› Issue (1): 495-507.DOI: 10.11949/0438-1157.20201091
饶富1,2(),马恩1,郑晓洪2,张西华1(),吕伟光2,姚沛帆1,孙峙1,2()
收稿日期:
2020-08-03
修回日期:
2020-10-30
出版日期:
2021-01-05
发布日期:
2021-01-05
通讯作者:
张西华,孙峙
作者简介:
饶富(1994—),男,硕士研究生,基金资助:
RAO Fu1,2(),MA En1,ZHENG Xiaohong2,ZHANG Xihua1(),LYU Weiguang2,YAO Peifan1,SUN Zhi1,2()
Received:
2020-08-03
Revised:
2020-10-30
Online:
2021-01-05
Published:
2021-01-05
Contact:
ZHANG Xihua,SUN Zhi
摘要:
作为一种战略金属,镍广泛应用于不锈钢、特殊金属合金、二次电池等领域。近年来,随着新能源汽车产业的快速发展以及动力电池正极材料“无钴高镍”发展趋势,对镍的需求量持续攀升。然而,我国镍资源的对外依存度高达86%,供需矛盾日益突出。针对镍冶炼主要原料的硫化镍矿开采、富集较为困难,传统冶炼方法存在回收率低、环境风险高等瓶颈问题,本研究在分析硫化镍矿矿物学特性的基础上,系统综述了硫化镍矿中镍提取技术的研究进展及存在的问题,综合考虑镍的回收率、物质和能量消耗、环境影响等因素,提出了强化硫化镍矿中镍提取技术研发的建议,同时对硫化镍矿中镍提取技术发展趋势进行了展望。
中图分类号:
饶富, 马恩, 郑晓洪, 张西华, 吕伟光, 姚沛帆, 孙峙. 硫化镍矿中镍提取技术研究进展[J]. 化工学报, 2021, 72(1): 495-507.
RAO Fu, MA En, ZHENG Xiaohong, ZHANG Xihua, LYU Weiguang, YAO Peifan, SUN Zhi. Research advances on nickel extraction technology from nickel sulfide ore[J]. CIESC Journal, 2021, 72(1): 495-507.
69 | Johnson D B. Biomining—biotechnologies for extracting and recovering metals from ores and waste materials[J]. Current Opinion in Biotechnology, 2014, 30: 24-31. |
70 | Rawlings D E. Microbially-assisted dissolution of minerals and its use in the mining industry[J]. Pure and Applied Chemistry, 2004, 76(4): 847-859. |
71 | 王金庆, 严群, 梁长利, 等. 硫化镍矿生物浸出研究进展[J]. 金属矿山, 2015, 44: 85-91. |
Wang J Q, Yan Q, Liang C L, et al. Research progress on the bioleaching of nickel sulfide ore [J]. Metal Mine, 2015, 44: 85-91. | |
72 | Razzell W E, Trussell P C. Isolation and properties of an iron-oxidizing thiobacillus[J]. Journal of Bacteriology, 1963, 85(3): 595-603. |
73 | Temple K L, Colmer A R. The autotrophic oxidation of iron by a new bacterium: Thiobacillus ferrooxidans[J]. Journal of Bacteriology, 1951, 62(5): 605. |
74 | 乔繁盛. 浸矿技术[M]. 北京: 原子能出版社, 1994: 417-422. |
Qiao F S. Leaching Technology[M]. Beijing: Atomic Energy Press, 1994: 417-422. | |
75 | Dopson M, Lindström E B. Potential role of Thiobacillus caldus in arsenopyrite bioleaching[J]. Applied and Environmental Microbiology, 1999, 65(1): 36-40. |
76 | Rawlings D E, Tributsch H, Hansford G S. Reasons why ‘Leptospirillum'-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores[J]. Microbiology-Reading, 1999, 145(1): 5-14. |
77 | Plumb J J, McSweeney N J, Franzmann P D. Growth and activity of pure and mixed bioleaching strains on low grade chalcopyrite ore[J]. Minerals Engineering, 2008, 21(1): 93-99. |
78 | Clark D A, Norris P R. Acidimicrobium ferrooxidans gen. nov., sp. nov.: mixed-culture ferrous iron oxidation with Sulfobacillus species[J]. Microbiology, 1996, 142(4): 785-790. |
79 | Coram N J, Rawlings D E. Molecular relationship between two groups of the genus Leptospirillum and the finding that Leptospirillum ferriphilum sp. nov. dominates South African commercial biooxidation tanks that operate at 40℃[J]. Applied and Environmental Microbiology, 2002, 68(2): 838-845. |
1 | Reck B K, Müller D B, Rostkowski K, et al. Anthropogenic nickel cycle: insights into use, trade, and recycling[J]. Environmental Science & Technology, 2008, 42(9): 3394-3400. |
2 | Myung S T, Maglia F, Park K J, et al. Nickel-rich layered cathode materials for automotive lithium-ion batteries: achievements and perspectives[J]. ACS Energy Letters, 2017, 2(1): 196-223. |
3 | Sun Q, Cheng H, Mei X, et al. Efficient synchronous extraction of nickel, copper, and cobalt from low–nickel matte by sulfation roasting‒water leaching process[J]. Scientific Reports, 2020, 10(1): 1-14. |
4 | Ilyas S, Srivastava R R, Kim H, et al. Extraction of nickel and cobalt from a laterite ore using the carbothermic reduction roasting-ammoniacal leaching process[J]. Separation and Purification Technology, 2020, 232: 115971. |
5 | Zeng X, Xu H, Tian Y, et al. Situation and sustainable development strategy of China's nickel resources industry[J]. Resour. Ind., 2015, 17(4): 94-99. |
6 | World Metal Statistics.World Metal Statistics Yearbook[R]. London: World Bureau of Metal Statistics, 2013: 11-17. |
7 | Nakajima K, Daigo I, Nansai K, et al. Global distribution of material consumption: nickel, copper, and iron[J]. Resources, Conservation and Recycling, 2018, 133: 369-374. |
8 | Li J, Li D, Xu Z, et al. Selective leaching of valuable metals from laterite nickel ore with ammonium chloride-hydrochloric acid solution[J]. Journal of Cleaner Production, 2018, 179: 24-30. |
9 | Farrokhpay S, Filippov L. Challenges in processing nickel laterite ores by flotation[J]. International Journal of Mineral Processing, 2016, 151: 59-67. |
10 | Habib K, Hansdóttir S T, Habib H. Critical metals for electromobility: global demand scenarios for passenger vehicles, 2015–2050[J]. Resources, Conservation and Recycling, 2020, 154: 104603. |
11 | Mudd G M. Global trends and environmental issues in nickel mining: sulfides versus laterites[J]. Ore Geology Reviews, 2010, 38(1/2): 9-26. |
12 | Wang F, Liu F, Elliott R, et al. Solid state extraction of nickel from nickel sulfide concentrates[J]. Journal of Alloys and Compounds, 2020, 822: 153582. |
13 | Cameron R A, Lastra R, Mortazavi S, et al. Bioleaching of a low-grade ultramafic nickel sulphide ore in stirred-tank reactors at elevated pH[J]. Hydrometallurgy, 2009, 97(3/4): 213-220. |
14 | Hedrich S, Kraemer D, Junge M, et al. Bioprocessing of oxidized platinum group element (PGE) ores as pre-treatment for efficient chemical extraction of PGE[J]. Hydrometallurgy, 2020, 196: 105419. |
15 | Crundwell F, Moats M, Ramachandran V, et al. Extractive Metallurgy of Nickel, Cobalt and Platinum Group Metals[M]. Elsevier, 2011: 147-158 |
16 | Xia F, Pring A, Brugger J. Understanding the mechanism and kinetics of pentlandite oxidation in extractive pyrometallurgy of nickel[J]. Minerals Engineering, 2012, 27: 11-19. |
17 | Huang K, Li Q, Chen J. Recovery of copper, nickel and cobalt from acidic pressure leaching solutions of low-grade sulfide flotation concentrates[J]. Minerals Engineering, 2007, 20(7): 722-728. |
18 | Zhang P, Guo Q, Wei G, et al. Extraction of metals from saprolitic laterite ore through pressure hydrochloric-acid selective leaching[J]. Hydrometallurgy, 2015, 157: 149-158. |
19 | Xiao W, Liu X, Zhao Z. Kinetics of nickel leaching from low-nickel matte in sulfuric acid solution under atmospheric pressure[J]. Hydrometallurgy, 2020, 194: 105353. |
20 | Zhen S, Yan Z, Zhang Y, et al. Column bioleaching of a low grade nickel-bearing sulfide ore containing high magnesium as olivine, chlorite and antigorite[J]. Hydrometallurgy, 2009, 96(4): 337-341. |
21 | Ke J, Li H. Bacterial leaching of nickel-bearing pyrrhotite[J]. Hydrometallurgy, 2006, 82(3/4): 172-175. |
22 | Guezennec A G, Bru K, Jacob J, et al. Co-processing of sulfidic mining wastes and metal-rich post-consumer wastes by biohydrometallurgy[J]. Minerals Engineering, 2015, 75: 45-53. |
23 | Barnes S J, Osborne G A, Cook D, et al. The Santa Rita nickel sulfide deposit in the Fazenda Mirabela intrusion, Bahia, Brazil: geology, sulfide geochemistry, and genesis[J]. Economic Geology, 2011, 106(7): 1083-1110. |
24 | Vignes A. Extractive Metallurgy 2: Metallurgical Reaction Processes[M]. John Wiley & Sons, 2013: 273-295. |
25 | Davis J R. ASM specialty handbook: nickel, cobalt, and their alloys[J]. ASM International, 2000: 38(11): 6206. |
26 | Rao G V. Nickel and cobalt ores: flotation[M]// Encyclopedia of Separation Science.Academic Press, 2000: 3491-3500. |
27 | Evans H T, Clark J R. The crystal structure of bartonite, a potassium iron sulfide, and its relationship to pentlandite and djerfisherite[J]. American Mineralogist, 1981, 66(3/4): 376-384. |
28 | 华一新. 有色金属概论[M]. 北京: 冶金工业出版社, 2007: 56-60. |
Hua Y X. Introduction to Nonferrous Metals [M]. Beijing: Metallurgical Industry Press, 2007: 56-60. | |
29 | 陈殿芬. 我国一些铜镍硫化物矿床主要金属矿物的特征[J]. 岩石矿物学杂志, 1995, 14(4): 345-354. |
Chen D F. Characteristics of major metal minerals in some copper-nickel sulfide deposits in China [J]. Chinese Journal of Rock and Mineralogy, 1995, 14 (4): 345-354. | |
30 | 芮会超, 焦建刚, 靳树芳. 金川铜镍硫化物矿床磁黄铁矿矿物学特征及成因意义[J]. 矿床地质, 2017, 36(2): 501-514. |
Rui H C, Jiao J G, Jin S F. The mineralogical characteristics and genetic significance of pyrite in the Jinchuan copper-nickel sulfide deposit [J]. Deposit Geology, 2017, 36 (2): 501-514. | |
31 | 陈家镛. 湿法冶金手册[M]. 北京: 冶金工业出版社, 2005: 700-702. |
Chen J Y. Handbook of Hydrometallurgy [J]. Beijing: Metallurgical Industry Press, 2005: 700-702. | |
32 | Shimakage K, Hoshi M, Ejima T. Kinetics and mechanism of the ammonia pressure leaching of laterite ore containing nickel[J]. Transactions of the Japan Institute of Metals, 1974, 15(2): 121-128. |
33 | Meng X, Han K N. The principles and applications of ammonia leaching of metals—a review[J]. Mineral Processing and Extractive Metullargy Review, 1996, 16(1): 23-61. |
34 | Forward F A, Mackiw V N. Chemistry of the ammonia pressure process for leaching Ni, Cu, and Co from Sherritt Gordon sulphide concentrates[J]. JOM, 1955, 7(3): 457-463. |
35 | Budac J J, Kofluk R, Belton D. Reductive leach process for improved recovery of nickel and cobalt in the Sherritt hexammine leach process[C]//Proceedings of the 39th Annual Hydrometallurgy Meetings held in conjunction with the 48th Annual Conference of Metallurgists of CIM. Canadian Institute of Mining and Metallurgy Sudbury, Ontario, Canada, 2009: 77-85. |
36 | Kerfoot D G E, Cordingley P D. The acid pressure leach process for nickel and cobalt laterite (Part Ⅱ): Review of operations at Fort Saskatchewan[C]//Proceedings of the Nickel-Cobalt 97 International Symposium. Canada, 1997: 17-20. |
37 | 杨显万, 邱定蕃. 湿法冶金[M]. 北京: 冶金工业出版社, 1998: 240-257. |
Yang X W, Qiu D F. Hydrometallurgy [J]. Beijing: Metallurgical Industry Press, 1998: 240-257. | |
38 | Smyres G A, Lei K P V, Carnahan T G. Hydrochloric Acid-oxygen Leaching and Metal Recovery from a Copper-nickel Bulk Sulfide Concentrate[M]. US Department of the Interior, Bureau of Mines, 1985: 5-13. |
39 | Huang K, Li Q, Chen J. Recovery of copper, nickel and cobalt from acidic pressure leaching solutions of low-grade sulfide flotation concentrates[J]. Minerals Engineering, 2007, 20(7): 722-728. |
40 | 朱军, 白苗苗, 李凡, 等. 硫化镍矿氧压浸出试验研究[J]. 矿冶工程, 2016, 36(2): 71-74. |
Zhu J, Bai M M, Li F, et al. Oxygen pressure leaching test of nickel sulfide ore [J]. Mining and Metallurgical Engineering, 2016, 36 (2): 71-74. | |
41 | 谢铿, 刘三平, 王海北. 赞比亚某硫化镍精矿氧压酸浸研究[J]. 有色金属 (冶炼部分), 2019, (10): 6-10. |
Xie Y, Liu S P, Wang H B. et al. Study on oxygen pressure acid leaching of a nickel sulfide concentrate in zambia [J]. Nonferrous Metals (Smelting Section), 2019, (10): 6-10. | |
42 | Amer A M. Investigation of the direct hydrometallurgical processing of mechanically activated complex sulphide ore, Akarem area, Egypt[J]. Hydrometallurgy, 1995, 38(3): 225-234. |
43 | 李忠国, 翟秀静, 邱竹贤, 等. 硫化镍精矿常压浸出研究[J]. 有色矿冶, 2005, (5): 28-30. |
Li Z G, Zhai X J, Qiu Z X, et al. Research on atmospheric leaching of nickel sulfide concentrate [J]. Nonferrous Mining & Metallurgy, 2005, (5): 28-30. | |
80 | Escobar B, Huenupi E, Godoy I, et al. Arsenic precipitation in the bioleaching of enargite by Sulfolobus BC at 70℃[J]. Biotechnology Letters, 2000, 22(3): 205-209. |
81 | Yoshida N, Nakasato M, Ohmura N, et al. Acidianus manzaensis sp. nov., a novel thermoacidophilic archaeon growing autotrophically by the oxidation of H2 with the reduction of Fe3+[J]. Current Microbiology, 2006, 53(5): 406-411. |
82 | Brierley C L, Brierley J A. A chemoautotrophic and thermophilic microorganism isolated from an acid hot spring[J]. Canadian Journal of Microbiology, 1973, 19(2): 183-188. |
83 | Waksman S A, Joffe J S. Microörganisms concerned in the oxidation of sulfur in the soil(Ⅱ): Thiobacillus thiooxidans, a new sulfur-oxidizing organism isolated from the soil[J]. Journal of bacteriology, 1922, 7(2): 239. |
84 | Qiu M, Xiong S, Zhang W, et al. A comparison of bioleaching of chalcopyrite using pure culture or a mixed culture[J]. Minerals Engineering, 2005, 18(9): 987-990. |
85 | Bevilaqua D, Diéz-Perez I, Fugivara C S, et al. Oxidative dissolution of chalcopyrite by Acidithiobacillus ferrooxidans analyzed by electrochemical impedance spectroscopy and atomic force microscopy[J]. Bioelectrochemistry, 2004, 64(1): 79-84. |
86 | Giaveno A, Lavalle L, Chiacchiarini P, et al. Bioleaching of zinc from low-grade complex sulfide ores in an airlift by isolated Leptospirillum ferrooxidans[J]. Hydrometallurgy, 2007, 89(1/2): 117-126. |
87 | Torma A E. Microbiological oxidation of synthetic cobalt, nickel and zinc sulfides by Thiobacillus ferrooxidans[J]. Revue Canadienne de Biologie, 1971, 30(3): 209. |
88 | Santos L R G, Barbosa A F, Souza A D, et al. Bioleaching of a complex nickel–iron concentrate by mesophile bacteria[J]. Minerals Engineering, 2006, 19(12): 1251-1258. |
89 | Nakazawa H, Hashizume T, Sato H. Effect of silver ions on bacterial leaching of flotation concentrate of copper-nickel sulfide ores[J]. Journal of the Mining and Materials Processing Institute of Japan, 1993, 109(2): 81-85. |
90 | Yang C, Qin W, Lai S, et al. Bioleaching of a low grade nickel-copper-cobalt sulfide ore[J]. Hydrometallurgy, 2011, 106(1/2): 32-37. |
91 | Cruz F L S, Oliveira V A, Guimarães D, et al. High-temperature bioleaching of nickel sulfides: thermodynamic and kinetic implications[J]. Hydrometallurgy, 2010, 105(1/2): 103-109. |
44 | Li X M, Chen J Y, Kammel R, et al. Application of attrition grinding in acid leaching of nickel sulfide concentrate[J]. 1997, (4): 144-148. |
45 | Xie Y, Xu Y, Yan L, et al. Recovery of nickel, copper and cobalt from low-grade Ni–Cu sulfide tailings[J]. Hydrometallurgy, 2005, 80(1/2): 54-58 |
46 | 黄欢, 张国范, 刘德志, 等. 硫化镍精矿-软锰矿在酸性条件下的协同浸出[J]. 有色金属工程, 2019, (6): 55-60. |
Huang H, Zhang G F, Liu D Z, et al. Cooperative leaching of nickel sulfide concentrate-pyromanganese ore under acidic conditions [J]. Nonferrous Metals Engineering, 2019, (6): 55-60. | |
47 | Lakshmanan V I, Sridhar R, Chen J, et al. A mixed-chloride atmospheric leaching process for the recovery of base metals from sulphide materials[J]. Transactions of the Indian Institute of Metals, 2017, 70(2): 463-470. |
48 | Xing Z, Cheng G, Yang H, et al. Mechanism and application of the ore with chlorination treatment: a review[J]. Minerals Engineering, 2020, 154: 106404. |
49 | Mukherjee T K, Gupta C K. Base metal resource processing by chlorination[J]. Mineral Procesing and Extractive Metallurgy Review, 1983, 1(1/2): 111-153. |
50 | Mu W, Cui F, Xin H, et al. A novel process for simultaneously extracting Ni and Cu from mixed oxide-sulfide copper-nickel ore with highly alkaline gangue via FeCl3∙ 6H2O chlorination and water leaching[J]. Hydrometallurgy, 2020, 191: 105187. |
51 | Li G, Zou X, Cheng H, et al. A novel ammonium chloride roasting approach for the high-efficiency Co-sulfation of nickel, cobalt, and copper in polymetallic sulfide minerals[J]. Metallurgical and Materials Transactions B, 2020, 51: 2769–2784. |
52 | Mukherjee T K, Menon P R, Shukla P P, et al. Chloridizing roasting process for a complex sulfide concentrate[J]. Jom, 1985, 37(6): 29-33. |
53 | Imideev V A, Aleksandrov P V, Medvedev A S, et al. Nickel sulfide concentrate processing using low-temperature roasting with sodium chloride[J]. Metallurgist, 2014, 58(5/6): 353-359. |
54 | Xu C, Cheng H, Li G, et al. Extraction of metals from complex sulfide nickel concentrates by low-temperature chlorination roasting and water leaching[J]. International Journal of Minerals, Metallurgy, and Materials, 2017, 24(4): 377-385. |
55 | Cui F, Mu W, Zhai Y, et al. The selective chlorination of nickel and copper from low-grade nickel-copper sulfide-oxide ore: mechanism and kinetics[J]. Separation and Purification Technology, 2020, 239: 116577. |
56 | Li G, Xiong X, Wang L, et al. Sulfation roasting of nickel oxide–sulfide mixed ore concentrate in the presence of ammonium sulfate: experimental and DFT studies[J]. Metals, 2019, 9(12): 1256. |
57 | 李光石. 硫化镍矿硫酸化焙烧反应机理及其调控机制的研究[D]. 上海: 上海大学, 2018. |
Li G S. Study on the reaction mechanism and control of the sulfide roasting of nickel sulfide ore[D]. Shanghai: Shanghai University, 2018 | |
58 | Thornhill P G. Method of roasting metal sulfide concentrates in a fluidized bed: US2813015[P]. 1957-11-12. |
59 | Yu D, Utigard T A, Barati M. Fluidized bed selective oxidation-sulfation roasting of nickel sulfide concentrate(Part Ⅱ): Sulfation roasting[J]. Metallurgical and Materials Transactions B, 2014, 45(2): 662-674. |
60 | Liu X, Feng Y, Li H, et al. Recovery of valuable metals from a low-grade nickel ore using an ammonium sulfate roasting-leaching process[J]. International Journal of Minerals, Metallurgy, and Materials, 2012, 19(5): 377-383. |
61 | 刘欣伟, 冯雅丽, 李浩然, 等. 硫酸铵焙烧法浸出镍磁黄铁矿中有价金属[J]. 中国有色金属学报, 2012, 22(5): 1520-1526. |
Liu X W, Feng Y L, Li H R, et al. Leaching of valuable metals from nickel pyrrhotite by ammonium sulfate roasting method[J]. The Chinese Journal of Nonferrous Metals, 2012, 22(5): 1520-1526.. | |
62 | Cui F, Mu W, Wang S, et al. Sodium sulfate activation mechanism on co-sulfating roasting to nickel-copper sulfide concentrate in metal extractions, microtopography and kinetics[J]. Minerals Engineering, 2018, 123: 104-116. |
63 | Sukhomlinov D, Virtanen O, Latostenmaa P, et al. Impact of MgO and K2O on slag-nickel matte equilibria[J]. Journal of Phase Equilibria and Diffusion, 2019, 40(6): 768-778. |
64 | 小博尔德.镍: 提取冶金 [M]. 金川有色金属公司, 译. 北京: 冶金工业出版社, 1977: 44-56. |
Boulder Jr. Nickel: Extractive Metallurgy [M]. Jinchuan Non-Ferrous Metals Company, trans. Beijing: Metallurgical Industry Press, 1977: 44-56. | |
65 | 陈新民. 火法冶金过程物理化学[M]. 北京: 冶金工业出版杜, 1994: 192-202. |
Chen X M. Pyrometallurgical Process Physical Chemistry [M]. Beijing: Metallurgical Industry Press, 1994: 192-202. | |
66 | Mahmoud A, Cézac P, Hoadley A F A, et al. A review of sulfide minerals microbially assisted leaching in stirred tank reactors[J]. International Biodeterioration & Biodegradation, 2017, 119: 118-146. |
67 | Vainshtein M. Bioleaching of metals as eco-friendly technology[M]//Current Environmental Issues and Challenges. Springer, Dordrecht, 2014: 197-205. |
68 | Johnson D B, Grail B M, Hallberg K B. A new direction for biomining: extraction of metals by reductive dissolution of oxidized ores[J]. Minerals, 2013, 3(1): 49-58. |
[1] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
[2] | 张正, 何永平, 孙海东, 张荣子, 孙正平, 陈金兰, 郑一璇, 杜晓, 郝晓刚. 蛇形流场电控离子交换装置用于选择性提锂[J]. 化工学报, 2023, 74(5): 2022-2033. |
[3] | 赵焕娟, 刘婧, 周冬雷, 林敏. 多孔材料对氢气爆轰的抑制作用[J]. 化工学报, 2023, 74(2): 968-976. |
[4] | 苏晨昱, 杨颖, 宋兴福. 岩盐矿提钾老卤中溴离子选择性电氧化过程研究[J]. 化工学报, 2022, 73(7): 3007-3017. |
[5] | 魏小兰, 戚文杰, 丁静, 陆建峰, 王维龙, 刘书乐. 氯化物熔盐中铬的价态对镍基合金腐蚀性的影响[J]. 化工学报, 2022, 73(7): 3182-3192. |
[6] | 杨伟, 王昱杰, 方凯斌, 邹汉波, 陈胜洲, 刘自力. Co-Mn比例调控对LiNi0.8Co0.10-y Mn0.05+y Al0.05O2材料性能影响探究[J]. 化工学报, 2022, 73(12): 5615-5624. |
[7] | 杜智华, 杨娟, 戴俊, 冷冲冲, 张鸽. Ni2+取代对ZnTi-LDH选择性光氧化去除NO的性能增强[J]. 化工学报, 2022, 73(11): 4998-5010. |
[8] | 周弋惟, 陈卓, 徐建鸿. 湿法冶金回收废旧锂电池正极材料的研究进展[J]. 化工学报, 2022, 73(1): 85-96. |
[9] | 王琪, 赵有璟, 刘洋, 王云昊, 王敏, 项顼. 高镁锂比盐湖镁锂分离与锂提取技术研究进展[J]. 化工学报, 2021, 72(6): 2905-2921. |
[10] | 谢昭明, 陈庚, 刘仁龙, 刘作华, 岑少斗, 陶长元, 郭胜惠. 刚柔组合桨强化软锰矿浸出过程的反应动力学特性[J]. 化工学报, 2021, 72(5): 2586-2595. |
[11] | 余作伟, 刘倩, 钟文琪, 周骏. 烘焙生物质燃烧过程中钾的赋存形态及析出迁移特性[J]. 化工学报, 2021, 72(4): 2258-2266. |
[12] | 王莹, 李倩, 曹丽霞, 李艳香, 李望良. 生物质基铀吸附材料的研究进展[J]. 化工学报, 2021, 72(3): 1205-1216. |
[13] | 王炼, 万超, 程党国, 陈丰秋, 詹晓力. NiZnCe复合氧化物的制备及其催化氧化正丁烷脱氢性能[J]. 化工学报, 2021, 72(1): 534-542. |
[14] | 史大昕, 李爱如, 方祝青, 李继娟, 矫庆泽, 吴芹, 冯彩虹, 赵芸, 黎汉生. 双环戊二烯加氢NiMox/γ-Al2O3催化剂耐硫特性的研究[J]. 化工学报, 2020, 71(9): 4177-4188. |
[15] | 赵少飞, 刘鹏, 李婉萍, 曾小红, 钟远红, 余林, 曾华强. 一步电沉积法制备硫化镍/泡沫镍材料及其赝电容性能研究[J]. 化工学报, 2020, 71(4): 1836-1843. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||