化工学报 ›› 2022, Vol. 73 ›› Issue (7): 3007-3017.doi: 10.11949/0438-1157.20220412

• 催化、动力学与反应器 • 上一篇    下一篇

岩盐矿提钾老卤中溴离子选择性电氧化过程研究

苏晨昱1,2(),杨颖1,2(),宋兴福1,2()   

  1. 1.华东理工大学,国家盐湖资源综合利用工程技术研究中心,上海 200237
    2.钾锂战略资源国际联合实验室,上海 200237
  • 收稿日期:2022-03-24 修回日期:2022-05-11 出版日期:2022-07-05 发布日期:2022-08-01
  • 通讯作者: 杨颖,宋兴福 E-mail:cysu1997@163.com;yyang@ecust.edu.cn;xfsong@ecust.edu.cn
  • 作者简介:苏晨昱(1997—),男,硕士研究生,cysu1997@163.com
  • 基金资助:
    国家重点基础研究发展计划项目(2018YFC0604802)

Selective electro-oxidation of bromide ion in potassium-extracted brine from rock salt mines

Chenyu SU1,2(),Ying YANG1,2(),Xingfu SONG1,2()   

  1. 1.National Engineering Research Center for Comprehensive Utilization of Salt Lake Resources, East China University of Science and Technology, Shanghai 200237, China
    2.Joint International Laboratory for Potassium and Lithium Strategic Resources, East China University of Science and Technology, Shanghai 200237, China
  • Received:2022-03-24 Revised:2022-05-11 Published:2022-07-05 Online:2022-08-01
  • Contact: Ying YANG,Xingfu SONG E-mail:cysu1997@163.com;yyang@ecust.edu.cn;xfsong@ecust.edu.cn

摘要:

中南半岛岩盐矿提钾老卤中溴离子含量约为3000 mg/L,是极具价值的制溴原料。岩盐矿伴生溴资源的有效利用,对提高岩盐矿资源综合利用价值,缓解我国溴资源短缺现状,具有经济、社会及环境多重意义。通过三电极体系线性扫描伏安法与电氧化实验,对含溴模拟卤水中溴离子的氧化速率以及氯离子浓度、电极的有效面积、搅拌速率对其的影响进行研究。结果表明1.150 V为合适的溴离子选择性氧化的电极电位,且反应符合一级反应动力学规律。针对氯离子浓度为280 g/L的岩盐矿提钾老卤,石墨电极的有效面积50.18 cm2,搅拌速率400 r/min时溴离子电氧化的速率最快,反应速率常数为0.3042 h-1,电氧化8 h后溴转化率为91.9%。

关键词: 电化学, 氧化, 溴素提取, 选择性, 三电极体系, 动力学

Abstract:

The bromide ion content in the potassium-extracted old brine from the Indo-China Peninsula rock salt mine is about 3000 mg/L, which is a valuable raw material for bromine production. The effective utilization of associated bromine resources in rock salt mines provides a number of significant economic, social, and environmental benefits, which will improve the comprehensive utilization value of rock salt mine resources and alleviate the shortage of bromine resources in our country. In this work, a three-electrode system was designed in which the anode was graphite electrode, the cathode was platinum sheet electrode, and the reference was Ag/AgCl electrode. Firstly, the suitable potential for selective electro-oxidation of Br- in the potassium-extracted brine from rock salt mines was determined by linear sweep voltammetry (LSV) method. Then, the kinetic and the expression of the oxidation rate of the electro-oxidation of Br- in bromine-containing simulated brine under this potential condition were explored through the electro-oxidation experiments in the three-electrode system. Finally, the influence of Cl- concentration, effective electrode area and stirring rate on the oxidation rate of Br- in bromine-containing simulated brine was investigated, and the optimal operating conditions were obtained. The results show that 1.150 V is a suitable electrode potential for the selective oxidation of bromide ions, and the reaction conforms to the first-order kinetic law. For the potassium-extracted brine from the rock salt mines with the Cl- concentration of 280 g/L, when the effective area of the graphite electrode is 50.18 cm2 and the stirring rate is 400 r/min, the fastest electro-oxidation rate of Br- was observed, the corresponding reaction rate constant is 0.3042 h-1, and about 91.9% of Br- was converted after 8 h of electro-oxidation.These results validate the feasibility of the selective oxidation of bromine in potassium-extracted brine from the rock salt mines by electro-oxidation.

Key words: electrochemistry, oxidation, bromine extraction, selectivity, three-electrode system, kinetics

中图分类号: 

  • TQ 110.3

图1

三电极体系装置示意图"

图2

不同体系线性扫描伏安法伏安特性曲线"

图3

模拟卤水在NaBr加入前后的电流变化"

图4

(a)阳极室中溴离子浓度与电氧化时间的关系;(b)零级反应动力学模型拟合;(c)一级反应动力学模型拟合;(d)二级反应动力学模型拟合"

图5

不同氯离子浓度下溴离子浓度(a)和溴转化率(b)随时间的变化"

图6

不同氯离子浓度下电氧化溴离子的一级反应动力学拟合(a)和一级反应动力学反应速率常数(b)"

图7

电氧化溴过程电流效率、单位能耗随氯离子浓度变化关系"

图8

不同阳极石墨电极有效面积下电氧化溴离子浓度(a)和溴转化率(b)随时间的变化关系"

图9

不同阳极石墨电极有效面积下电氧化溴离子的一级反应动力学拟合(a)和一级反应动力学反应速率常数(b)"

图10

不同转速下电氧化溴离子浓度(a)和溴转化率(b)随时间的变化关系"

图11

不同转子转速下电氧化溴离子的一级反应动力学拟合(a)和一级反应动力学反应速率常数(b)"

1 陈向楠, 王海增. 溴素资源与产业发展分析[J]. 盐业与化工, 2013, 42(6): 4-7.
Chen X N, Wang H Z. Bromine resource and analysis of the industry development[J]. Journal of Salt and Chemical Industry, 2013, 42(6): 4-7.
2 柴子华, 李明明. 我国溴工业生产技术现状与展望[J]. 盐科学与化工, 2018, 47(6): 1-4.
Chai Z H, Li M M. Domestic manufacturing process and expectation of bromine industry[J]. Journal of Salt Science and Chemical Industry, 2018, 47(6): 1-4.
3 中华人民共和国海关总署. 海关统计数据在线查询平台[EB/OL].[2022-03-23]. .
General Administration of Customs. P.R.China. Customs Statistics [EB/OL]. [2022-03-23]. .
4 王刚, 李建国. 盐化工工艺学[M]. 北京: 清华大学出版社, 2016.
Wang G, Li J G. Salt Chemical Technology[M]. Beijing: Tsinghua University Press, 2016.
5 朱延浙, 吴军, 严城民. 老挝钾盐资源现状及对策建议[J]. 资源与产业, 2016, 18(2): 44-47.
Zhu Y Z, Wu J, Yan C M. Actuality of and approaches to Laos's potash resources[J]. Resources & Industries, 2016, 18(2): 44-47.
6 李建业. 浅析老挝钾矿资源开发现状[J]. 盐业与化工, 2016, 45(10): 5-9.
Li J Y. Analysis on the current situation in Laos potash resource development[J]. Journal of Salt and Chemical Industry, 2016, 45(10): 5-9.
7 秦占杰. 呵叻高原钾盐矿床物源及其沉积演化的地球化学研究[D]. 西宁: 中国科学院大学(中国科学院青海盐湖研究所), 2019.
Qin Z J. Geochemical research on the provenance and sedimentary characteristics of potash deposits in the Khorat Plateau[D]. Xining: Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, 2019.
8 Stewart L C. Commercial extraction of bromine from sea water[J]. Industrial & Engineering Chemistry, 2002, 26(4): 361-369.
9 王寿武, 卢伯南. 溴素生产现状及展望[J]. 中国井矿盐, 2004, 35(2): 9-12.
Wang S W, Lu B N. Current situation and prospect of elementary bromine production[J]. China Well and Rock Salt, 2004, 35(2): 9-12.
10 李萌. 海水提溴技术的研究与发展[J]. 盐业与化工, 2014, 43(11): 1-4.
Li M. Research and development of the technique about bromine extracting from seawater[J]. Journal of Salt and Chemical Industry, 2014, 43(11): 1-4.
11 詹进先. 试论威远气田水提溴技术[J]. 石油与天然气化工, 1996, 25(4): 239-242, 248.
Zhan J X. Discussion on bromine extraction from Weiyuan gas field water[J]. Oil & Gas Chemicals, 1996, 25(4): 239-242, 248.
12 张力军, 王薇, 王修林. 溴素生产技术及溴系列产品的开发[J]. 海洋科学, 1998, 22(5): 20-23.
Zhang L J, Wang W, Wang X L. Introduction to technique of manufacturing bromine and prospecting development trend in bromined products[J]. Marine Sciences, 1998, 22(5): 20-23.
13 朱昌洛, 寇建军. 树脂吸附法由卤水中提溴[J]. 矿产综合利用, 2003(5): 13-16.
Zhu C L, Kou J J. Extraction of bromine from brine by RIP method[J]. Multipurpose Utilization of Mineral Resources, 2003(5): 13-16.
14 袁纯怡, 孙玉柱, 杨颖, 等. D301树脂动态吸附溴离子过程探究及模型拟合[J]. 过程工程学报, 2020, 20(6): 655-666.
Yuan C Y, Sun Y Z, Yang Y, et al. Performance and modelling of bromide dynamic adsorption onto D301 anion exchange resin[J]. The Chinese Journal of Process Engineering, 2020, 20(6): 655-666.
15 孙维缜. 强碱性阴离子交换树脂用于卤水提溴[J]. 水处理技术, 1985, 11(4): 44-47.
Sun W Z. Extraction of bromine from brine by strongly basic anion exchange resin process[J]. Technology of Water Treatment, 1985, 11(4): 44-47.
16 Qi Z, Cussler E L. Bromine recovery with hollow fiber gas membranes[J]. Journal of Membrane Science, 1985, 24(1): 43-57.
17 Singh V, Rhinehart R R, Narayan R S, et al. Transport analysis of hollow fiber gas separation membranes[J]. Industrial & Engineering Chemistry Research, 1995, 34(12): 4472-4478.
18 Nakashio F. Recent advances in separation of metals by liquid surfactant membranes[J]. Journal of Chemical Engineering of Japan, 1993, 26(2): 123-133.
19 李海民, 程怀德, 张全有. 卤水资源开发利用技术述评(续完)[J]. 盐湖研究, 2004, 12(1): 56,62-72.
Li H M, Cheng H D, Zhang Q Y. Evaluation of the technologies of comprehensive utilizationand exploitation brine resources[J]. Journal of Salt Lake Research, 2004, 12(1): 56,62-72.
20 Cohen I, Shapira B, Avraham E, et al. Bromide ions specific removal and recovery by electrochemical desalination[J]. Environmental Science & Technology, 2018, 52(11): 6275-6281.
21 武爱莲, 孙彦平. 溴离子在旋转圆盘电极上氧化动力学模型[J]. 太原理工大学学报, 1999, 30(1): 36-39.
Wu A L, Sun Y P. A model of bromide oxidation on a rotating disk electrode[J]. Journal of Taiyuan University of Technology, 1999, 30(1): 36-39.
22 Sun M, Lowry G V, Gregory K B. Selective oxidation of bromide in wastewater brines from hydraulic fracturing[J]. Water Research, 2013, 47(11): 3723-3731.
23 Zhang X, Ji Z Y, Liu F, et al. Investigation of electrochemical oxidation technology for selective bromine extraction in comprehensive utilization of concentrated seawater[J]. Separation and Purification Technology, 2020, 248: 117108.
24 张晓, 纪志永, 汪婧, 等. 电氧化法地下卤水提溴探究及条件优化[J]. 化工学报, 2021, 72(4): 2123-2131.
Zhang X, Ji Z Y, Wang J, et al. Exploration and optimization of extraction process of bromine from underground brine by electrooxidation[J]. CIESC Journal, 2021, 72(4): 2123-2131.
25 王丹, 赵方, 于建国, 等. 微通道中萃取法分离提取溴素[J]. 华东理工大学学报(自然科学版), 2021, DOI:10.14135/j.cnki.1006-3080.20210617003 .
doi: 10.14135/j.cnki.1006-3080.20210617003
Wang D, Zhao F, Yu J G, et al. Separation and extraction of bromine by microchannel extraction[J]. Journal of East China University of Science and Technology, 2021,DOI:10.14135/j.cnki.1006-3080.20210617003 .
doi: 10.14135/j.cnki.1006-3080.20210617003
26 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 化学试剂 溴: [S]. 北京: 中国标准出版社, 2011.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Chemical reagent—bromine: [S]. Beijing: Standards Press of China, 2011.
27 Fogler H S. Elements of chemical reaction engineering[J]. Chemical Engineering Science, 1987, 42(10): 2493.
28 Haynes W M, Lide D R, Bruno T J. CRC Handbook of Chemistry and Physics[M]. CRC Press, 2016.
29 屈红强, 舒尊哲. 无机化学[M]. 成都: 四川大学出版社, 2015.
Qu H Q, Shu Z Z. Inorganic Chemistry[M]. Chengdu: Sichuan University Press, 2015.
30 Li S F. Reaction Engineering[M]. Beijing: Chemical Industry Press, 2016.
31 刘国桢. 现代氯碱技术手册[M]. 北京: 化学工业出版社, 2018.
Liu G Z. Modern Chlor-alkali Technical Manual[M]. Beijing: Chemical Industry Press, 2018.
32 许晓慧. 海盐生产及苦卤利用技术[M]. 北京: 化学工业出版社, 2017.
Xu X H. Sea Salt Production and Bittern Utilization Technology[M]. Beijing: Chemical Industry Press, 2017.
33 郭晓俊, 袁俊生, 赵颖颖, 等. 浓海水制备液体盐过程中空气吹出法除溴的研究[J]. 河北工业大学学报, 2017, 46(3): 73-77.
Guo X J, Yuan J S, Zhao Y Y, et al. On removal of bromine by air blowing method in the preparing course of liquid salt from brine[J]. Journal of Hebei University of Technology, 2017, 46(3): 73-77.
34 杨金水, 成新云, 滕克山. 浅谈冬季制溴生产工艺[J]. 盐业与化工, 2012, 41(8): 20-22.
Yang J S, Cheng X Y, Teng K S. Brief discussion on bromine production technology in winter[J]. Journal of Salt and Chemical Industry, 2012, 41(8): 20-22.
[1] 陈玉弓, 陈昊, 黄耀松. 基于分子反应动力学模拟的六甲基二硅氧烷热解机理研究[J]. 化工学报, 2022, 73(7): 2844-2857.
[2] 李亚飞, 邓建强, 何阳. 跨临界CO2快速膨胀过程中非平衡冷凝和闪蒸机理的数值研究[J]. 化工学报, 2022, 73(7): 2912-2923.
[3] 朱江伟, 马鹏飞, 杜晓, 杨言言, 郝晓刚, 罗善霞. 基于可变价NiFe-LDH/rGO对磷酸根离子的特异性电控分离[J]. 化工学报, 2022, 73(7): 3057-3067.
[4] 褚有群, 葛展榜, 焦玉峰, 张建平, 郭冠璇, 朱英红. 有机-水混合溶剂中氯离子对C—H键的电氧化腈化性能[J]. 化工学报, 2022, 73(7): 3018-3025.
[5] 张昕哲, 孙文涛, 吕波, 李春. 植物天然产物氧化与微生物制造[J]. 化工学报, 2022, 73(7): 2790-2805.
[6] 李彬, 宋文明, 杨坤龙, 姜爽, 张天永. 水系有机液流电池活性材料的分子工程研究进展[J]. 化工学报, 2022, 73(7): 2806-2818.
[7] 罗佳, 吴双应, 肖兰, 周世耀, 陈志莉. 撞击速度对连续液滴撞击热圆柱壁面局部传热特性影响的实验[J]. 化工学报, 2022, 73(7): 2944-2951.
[8] 刘洪超, 陈苏航, 段先力, 吴凡, 徐小飞, 宋先雨, 赵双良, 刘洪来. Janus石墨烯量子点在生物膜中的输运行为:分子动力学模拟[J]. 化工学报, 2022, 73(7): 2835-2843.
[9] 乃学瑛, 吴鹏, 程远, 肖剑飞, 刘鑫, 董亚萍. 水热生长碱式硫酸镁纳米线结晶动力学研究[J]. 化工学报, 2022, 73(7): 3038-3044.
[10] 张劢, 田瑶, 郭之旗, 王叶, 窦广进, 宋浩. 光催化-生物杂合系统设计优化用于燃料和化学品绿色合成[J]. 化工学报, 2022, 73(7): 2774-2789.
[11] 王沛, 魏荣阔. 光热驱动多孔氧化铈热化学循环解水制氢非热质平衡模型[J]. 化工学报, 2022, 73(7): 2885-2894.
[12] 赵涛岩, 曹江涛, 李平, 冯琳, 商瑀. 区间二型模糊免疫PID在环己烷无催化氧化温度控制系统中的应用[J]. 化工学报, 2022, 73(7): 3166-3173.
[13] 欧阳萍, 张睿, 周剑, 刘海燕, 刘植昌, 徐春明, 孟祥海. 铜铝双金属复合离子液体的电化学行为及电沉积铜机理[J]. 化工学报, 2022, 73(7): 3212-3221.
[14] 张文静, 李静, 魏子栋. 介尺度视角下的电催化:从界面、隔膜到多孔电极[J]. 化工学报, 2022, 73(6): 2289-2305.
[15] 李智超, 郑瑜, 张润楠, 姜忠义. 高通量抗污染氧化石墨烯膜研究进展[J]. 化工学报, 2022, 73(6): 2370-2380.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!