1 |
禹兴海, 罗齐良, 潘剑, 等. 一种生物炭基柔性固态超级电容器的制备及性能研究[J]. 化工学报, 2019, 70(9): 3590-3600.
|
|
Yu X H, Luo Q L, Pan J, et al. Preparation and properties of flexible supercapacitor based on biochar and solid gel-electrolyte[J]. CIESC Juornal, 2019, 70(9): 3590-3600.
|
2 |
Mariappan V K, Krishnamoorthy K, Pazhamalai P, et al. Nanostructured ternary metal chalcogenide-based binder-free electrodes for high energy density asymmetric supercapacitors[J]. Nano Energy, 2019, 57: 307-316.
|
3 |
He S H, Li Z P, Wang J Q, et al. MOF-derived NixCo1-x(OH)2 composite microspheres for high-performance supercapacitors[J]. RSC Adv., 2016, 6(55): 49478-49486.
|
4 |
Cai D P, Wang D D, Wang C X, et al. Construction of desirable NiCo2S4 nanotube arrays on nickel foam substrate for pseudocapacitors with enhanced performance[J]. Electrochimica Acta, 2015, 151: 35-41.
|
5 |
Huo H H, Zhao Y Q, Xu C L. 3D Ni3S2 nanosheet arrays supported on Ni foam for high-performance supercapacitor and non-enzymatic glucose detection[J]. Journal of Materials Chemistry A, 2014, 2(36): 15111-15117.
|
6 |
Tran V C, Sahoo S, Shim J J. Room-temperature synthesis of NiS hollow spheres on nickel foam for high-performance supercapacitor electrodes[J]. Materials Letters, 2018, 210: 105-108.
|
7 |
Chen L, Guan L X, Tao J G. Morphology control of Ni3S2 multiple structures and their effect on supercapacitor performances[J]. Journal of Materials Science, 2019, 54(19): 12737-12746.
|
8 |
Ji F Z, Jiang D, Chen X M, et al. Simple in-situ growth of layered Ni3S2 thin film electrode for the development of high-performance supercapacitors[J]. Applied Surface Science, 2017, 399: 432-439.
|
9 |
朱裔荣, 贠潇如, 吴尚霖, 等. 多孔硫化镍中空亚微球的制备及其超电容性能研究[J]. 湖南工业大学学报, 2019, 33(5): 92-98.
|
|
Zhu Y R, Yun X R, Wu S L, et al. Research on the preparation and supercapacitive properties of porous nickel sulfide hollow submicrospheres[J]. Journal of Hunan University of Technology, 2019, 33(5): 92-98.
|
10 |
Zhang Y, Zhang J Q, Wan L, et al. Construction of 3D polypyrrole/CoS/graphene composite electrode with enhanced pseudocapacitive performance[J]. Ionics, 2018, 24(9): 2689-2696.
|
11 |
Wen Y X, Liu Y P, Dang S, et al. High mass loading Ni-decorated Co9S8 with enhanced electrochemical performance for flexible quasi-solid-state asymmetric supercapacitors[J]. Journal of Power Sources, 2019, 423: 106-114.
|
12 |
赵双生, 应宗荣, 杨佳佳, 等. “一锅法”水热制备CuS/C复合材料及其在超级电容器中的应用[J]. 化工学报, 2016, 67(11): 4892-4898.
|
|
Zhao S S, Ying Z R, Yang J J, et al. One-pot hydrothermal synthesis of CuS/C composite and its application in supercapacitors[J]. CIESC Journal, 2016, 67(11): 4892-4898.
|
13 |
Zhang Y, Wang X Z, Shen M, et al. Uniform growth of NiCo2S4 nanoflakes arrays on nickel foam for binder-free high-performance supercapacitors[J]. Journal of Materials Science, 2019, 54(6): 4821-4830.
|
14 |
Shi B B, Saravanakumar B, Wei W, et al. 3D honeycomb NiCo2S4@ Ni(OH)2 nanosheets for flexible all-solid-state asymmetric supercapacitors with enhanced specific capacitance[J]. Journal of Alloys and Compounds, 2019, 790: 693-702.
|
15 |
Liu Y P, Li Z L, Yao L, et al. Confined growth of NiCo2S4 nanosheets on carbon flakes derived from eggplant with enhanced performance for asymmetric supercapacitors[J]. Chemical Engineering Journal, 2019, 366: 550-559.
|
16 |
Su C, Xu S S, Zhang L, et al. Hierarchical CoNi2S4 nanosheet/nanotube array structure on carbon fiber cloth for high-performance hybrid supercapacitors[J]. Electrochimica Acta, 2019, 305: 81-89.
|
17 |
Kamali-Heidari E, Xu Z L, Sohi M H, et al. Core-shell structured Ni3S2 nanorods grown on interconnected Ni-graphene foam for symmetric supercapacitors[J]. Electrochimica Acta, 2018, 271: 507-518.
|
18 |
Li Y J, Ye K, Cheng K, et al. Electrodeposition of nickel sulfide on graphene-covered make-up cotton as a flexible electrode material for high-performance supercapacitors[J]. Journal of Power Sources, 2015, 274: 943-950.
|
19 |
Yao M Q, Sun B L, He L X, et al. Self-assembled Ni3S2 nanosheets with mesoporous structure tightly held on Ni foam as a highly efficient and long-term electrocatalyst for water oxidation[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(5): 5430-5439.
|
20 |
Pramanik A, Maiti S, Sreemany M, et al. Carbon doped MnCo2S4 microcubes grown on Ni foam as high energy density faradaic electrode[J]. Electrochimica Acta, 2016, 213: 672-679.
|
21 |
Chen J S, Guan C, Gui Y, et al. Rational design of self-supported Ni3S2 nanosheets array for advanced asymmetric supercapacitor with a superior energy density[J]. ACS Applied Materials & Interfaces, 2017, 9(1): 496-504.
|
22 |
Xu J S, Sun Y D, Lu M J, et al. One-step electrodeposition fabrication of Ni3S2 nanosheet arrays on Ni foam as an advanced electrode for asymmetric supercapacitors[J]. Science China Materials, 2019, 62(5): 699-710.
|
23 |
Chou S W, Lin J Y. Cathodic deposition of flaky nickel sulfide nanostructure as an electroactive material for high-performance supercapacitors[J]. Journal of the Electrochemical Society, 2013, 160(4): D178-D182.
|
24 |
Ou X, Gan L, Luo Z. Graphene-templated growth of hollow Ni3S2 nanoparticles with enhanced pseudocapacitive performance[J]. Journal of Materials Chemistry A, 2014, 2(45): 19214-19220.
|
25 |
Feng N, Hu D K, Wang P, et al. Growth of nanostructured nickel sulfide films on Ni foam as high-performance cathodes for lithium ion batteries[J]. Phys. Chem. Chem. Phys., 2013, 15(24): 9924-9930.
|
26 |
Liu Y D, Liu G Q, Nie X, et al. In situ formation of Ni3S2-Cu1.8S nanosheets to promote hybrid supercapacitor performance[J]. Journal of Materials Chemistry A, 2019, 7(18): 11044-11052.
|
27 |
Chen X J, Chen D, Guo X Y, et al. Facile growth of caterpillar-like NiCo2S4 nanocrystal arrays on nickle foam for high-performance supercapacitors[J]. ACS Applied Materials & Interfaces, 2017, 9(22): 18774-18781.
|
28 |
Liu L, Chen T, Rong H, et al. NiCo2S4 nanosheets network supported on Ni foam as an electrode for hybrid supercapacitors[J]. Journal of Alloys and Compounds, 2018, 766: 149-156.
|
29 |
Zha D S, Fu Y S, Zhang L L, et al. Design and fabrication of highly open nickel cobalt sulfide nanosheets on Ni foam for asymmetric supercapacitors with high energy density and long cycle-life[J]. Journal of Power Sources, 2018, 378: 31-39.
|
30 |
Zang X, Dai Z, Yang J, et al. Template-assisted synthesis of nickel sulfide nanowires: tuning the compositions for supercapacitors with improved electrochemical stability[J]. ACS Applied Materials & Interfaces, 2016, 8(37): 24645-24651.
|