化工学报 ›› 2021, Vol. 72 ›› Issue (4): 1863-1873.DOI: 10.11949/0438-1157.20201199
刘祖虎1,2(),胡兴邦1,陈善勇1,李国祥3,郭学锋1(),张志炳1,4()
收稿日期:
2020-08-21
修回日期:
2020-10-23
出版日期:
2021-04-05
发布日期:
2021-04-05
通讯作者:
郭学锋,张志炳
作者简介:
刘祖虎(1986—),男,博士研究生,高级工程师,注册化工工程师,基金资助:
LIU Zuhu1,2(),HU Xingbang1,CHEN Shanyong1,LI Guoxiang3,GUO Xuefeng1(),ZHANG Zhibing1,4()
Received:
2020-08-21
Revised:
2020-10-23
Online:
2021-04-05
Published:
2021-04-05
Contact:
GUO Xuefeng,ZHANG Zhibing
摘要:
美罗培南是一种广谱、高效、安全的抗生素,也是治疗新冠肺炎的临床药物之一。研究美罗培南加氢反应的一锅法和两步法工艺过程,利用基团贡献法估算反应体系中各组分的物性,包括临界参数、标准摩尔生成焓、标准摩尔熵、比热容等。利用热力学基本原理,计算美罗培南加氢反应的标准摩尔反应焓、标准摩尔反应熵、标准摩尔反应Gibbs自由能和平衡常数。结果表明,美罗培南加氢反应是放热反应,且放热量较大,降低操作温度有利于反应向热力学有利的方向进行;加氢反应是较容易进行的,缩合反应的平衡常数远小于加氢反应;可着重考虑采用降低操作温度,及时移出反应产物等方式推动缩合反应向正反应方向进行。热力学理论计算与实际情况吻合较好。一锅法在热力学上优于两步法,但需要解决催化剂易中毒问题。将抗中毒的包围型催化剂与微界面反应强化技术结合优化一锅法加氢过程是对美罗培南加氢反应技术升级一个值得探索的方向。
中图分类号:
刘祖虎, 胡兴邦, 陈善勇, 李国祥, 郭学锋, 张志炳. 美罗培南加氢反应体系的热力学计算和分析[J]. 化工学报, 2021, 72(4): 1863-1873.
LIU Zuhu, HU Xingbang, CHEN Shanyong, LI Guoxiang, GUO Xuefeng, ZHANG Zhibing. Thermodynamic calculation and analysis of meropenem hydrogenation reaction system[J]. CIESC Journal, 2021, 72(4): 1863-1873.
物质 | Tm/K | Tb/K | Tc/K | pc/ MPa | Vc/ (cm3/mol) | ΔvHb/ (kJ/mol) | (kJ/mol) | (kJ/mol) | (kJ/mol) | (J/(K?mol)) | (J/(K?mol)) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A/(J/(K?mol)) | B/(J/ (K-2?mol)) | C/(J/ (K-3?mol)) | D/(J/ (K-4?mol)) | ||||||||||||
美罗培南 | 822.13 | 1004.31 | 1230.66 | 2.186 | 1015.5 | 79.25 | 134.77 | -649.463 | -784.233 | 413.21 | -39.04 | 48.01 | 2.16 | -1.51×10-3 | 4.13×10-7 |
保护美罗培南 | 1241.13 | 1763.13 | 2335.41 | 1.102 | 1818.5 | 115.61 | 186.12 | -445.712 | -631.832 | 1750.74 | 1126.18 | 37.322 | 3.46 | -2.33×10-3 | 5.84×10-7 |
母核 | 898.4 | 1391.65 | 1720.42 | 1.379 | 1491.5 | 101.97 | 176.61 | -201.751 | -378.361 | 1203.6 | 610.95 | 42.731 | 2.54 | -1.48×10-3 | 2.72×10-7 |
侧链 | 674.53 | 950.34 | 1199.31 | 2.405 | 917.5 | 79.62 | 128.99 | -86.195 | -215.185 | 976.735 | 543.88 | 17.781 | 1.66 | -1.05×10-3 | 2.36×10-7 |
磷酸二苯酯 | 368.33 | 654.54 | 867.68 | 3.642 | 591.5 | 52.39 | 75.75 | -23.985 | -99.735 | 358.91 | 104.72 | 7.69 | 8.10×10-1 | -2.80×10-4 | -4.36×10-8 |
对甲苯胺 | 290.35 | 463.75 | 691.8 | 4.345 | 348.5 | 44.35 | 54.43 | 46.767 | -7.663 | 420.7 | 238.05 | -16.59 | 5.92×10-1 | -3.65×10-4 | 8.37×10-8 |
表1 美罗培南加氢反应体系物性估算和计算结果
Table 1 Estimated properties of meropenem hydrogenation system
物质 | Tm/K | Tb/K | Tc/K | pc/ MPa | Vc/ (cm3/mol) | ΔvHb/ (kJ/mol) | (kJ/mol) | (kJ/mol) | (kJ/mol) | (J/(K?mol)) | (J/(K?mol)) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A/(J/(K?mol)) | B/(J/ (K-2?mol)) | C/(J/ (K-3?mol)) | D/(J/ (K-4?mol)) | ||||||||||||
美罗培南 | 822.13 | 1004.31 | 1230.66 | 2.186 | 1015.5 | 79.25 | 134.77 | -649.463 | -784.233 | 413.21 | -39.04 | 48.01 | 2.16 | -1.51×10-3 | 4.13×10-7 |
保护美罗培南 | 1241.13 | 1763.13 | 2335.41 | 1.102 | 1818.5 | 115.61 | 186.12 | -445.712 | -631.832 | 1750.74 | 1126.18 | 37.322 | 3.46 | -2.33×10-3 | 5.84×10-7 |
母核 | 898.4 | 1391.65 | 1720.42 | 1.379 | 1491.5 | 101.97 | 176.61 | -201.751 | -378.361 | 1203.6 | 610.95 | 42.731 | 2.54 | -1.48×10-3 | 2.72×10-7 |
侧链 | 674.53 | 950.34 | 1199.31 | 2.405 | 917.5 | 79.62 | 128.99 | -86.195 | -215.185 | 976.735 | 543.88 | 17.781 | 1.66 | -1.05×10-3 | 2.36×10-7 |
磷酸二苯酯 | 368.33 | 654.54 | 867.68 | 3.642 | 591.5 | 52.39 | 75.75 | -23.985 | -99.735 | 358.91 | 104.72 | 7.69 | 8.10×10-1 | -2.80×10-4 | -4.36×10-8 |
对甲苯胺 | 290.35 | 463.75 | 691.8 | 4.345 | 348.5 | 44.35 | 54.43 | 46.767 | -7.663 | 420.7 | 238.05 | -16.59 | 5.92×10-1 | -3.65×10-4 | 8.37×10-8 |
物质物性 | 文献实验值/ 文献估算值 | 本文 估算值 | 偏差 |
---|---|---|---|
美罗培南,Tb/K | 900.4±55(估算值) | 1004.31 | +5.12% |
侧链,Tb/K | 828.8±50(估算值) | 950.34 | +8.14% |
磷酸二苯酯,Tm/K | 340~341(实验值) | 368.33 | +8.01% |
磷酸二苯酯,Tb/K | 650.7±25(估算值) | 654.54 | 一致 |
对甲苯胺,Tm/K | 313±10.0(实验值) | 290.35 | -7.35% |
对甲苯胺,Tb/K | 470.4±9.0(实验值) | 463.75 | 一致 |
对甲苯胺,ΔvHb/(kJ/mol) | 43.36±3.0(实验值) | 44.35 | 一致 |
表2 部分已有文献值与本文估算值的比较
Table 2 Comparison between SciFinder value and the estimated value in this paper
物质物性 | 文献实验值/ 文献估算值 | 本文 估算值 | 偏差 |
---|---|---|---|
美罗培南,Tb/K | 900.4±55(估算值) | 1004.31 | +5.12% |
侧链,Tb/K | 828.8±50(估算值) | 950.34 | +8.14% |
磷酸二苯酯,Tm/K | 340~341(实验值) | 368.33 | +8.01% |
磷酸二苯酯,Tb/K | 650.7±25(估算值) | 654.54 | 一致 |
对甲苯胺,Tm/K | 313±10.0(实验值) | 290.35 | -7.35% |
对甲苯胺,Tb/K | 470.4±9.0(实验值) | 463.75 | 一致 |
对甲苯胺,ΔvHb/(kJ/mol) | 43.36±3.0(实验值) | 44.35 | 一致 |
公式 | (kJ/mol) | (J/(K?mol)) | (kJ/mol) | |
---|---|---|---|---|
式(1) | -1842.568 | -1164.91 | -1495.425 | 1.36×10262 |
式(2) | -138.021 | 76.07 | -160.69 | 1.47×1028 |
式(3) | -1704.547 | -1240.98 | -1334.735 | 9.25×10233 |
表3 美罗培南加氢反应体系的标准摩尔反应焓、标准摩尔熵变、标准摩尔反应Gibbs自由能、标准平衡常数
Table 3 Standard molar reaction enthalpy, standard molar entropy change,standard molar reaction Gibbs free energy and standard equilibrium constant of meropenem hydrogenation reaction
公式 | (kJ/mol) | (J/(K?mol)) | (kJ/mol) | |
---|---|---|---|---|
式(1) | -1842.568 | -1164.91 | -1495.425 | 1.36×10262 |
式(2) | -138.021 | 76.07 | -160.69 | 1.47×1028 |
式(3) | -1704.547 | -1240.98 | -1334.735 | 9.25×10233 |
基团估算法 | |||
---|---|---|---|
式(1) | 式(2) | 式(3) | |
Joback法 | -1021.07 | 4.44 | -1025.51 |
Benson法 | -743.16 | 300.33 | -1043.49 |
Constantinous法 | -1495.425 | -160.69 | -1334.735 |
表4 采用不同基团估算法得出的标准摩尔反应Gibbs自由能
Table 4 The standard molar Gibbs free energy variation obtained by different group estimation method
基团估算法 | |||
---|---|---|---|
式(1) | 式(2) | 式(3) | |
Joback法 | -1021.07 | 4.44 | -1025.51 |
Benson法 | -743.16 | 300.33 | -1043.49 |
Constantinous法 | -1495.425 | -160.69 | -1334.735 |
反应温度/K | 标准平衡常数 | ||
---|---|---|---|
式(1) | 式(2) | 式(3) | |
323 | 1.5×10237 | 1.97×1026 | 7.5×10210 |
318 | 7×10241 | 4.42×1026 | 1.6×10215 |
313 | 4.7×10246 | 1.02×1027 | 4.6×10219 |
308 | 4.5×10251 | 2.41×1027 | 1.9×10224 |
303 | 6.4×10256 | 5.86×1027 | 1.1×10229 |
298 | 1.4×10262 | 1.47×1028 | 9.3×10233 |
293 | 4.4×10267 | 3.8×1028 | 1.2×10239 |
288 | 2.3×10273 | 1.02×1029 | 2.2×10244 |
283 | 1.9×10279 | 2.82×1029 | 6.6×10249 |
278 | 2.5×10285 | 8.08×1029 | 3.1×10255 |
273 | 5.7×10291 | 2.41×1030 | 2.4×10261 |
表5 美罗培南加氢反应体系不同温度下的标准平衡常数
Table 5 Standard equilibrium constant of meropenem hydrogenation reaction at different temperature
反应温度/K | 标准平衡常数 | ||
---|---|---|---|
式(1) | 式(2) | 式(3) | |
323 | 1.5×10237 | 1.97×1026 | 7.5×10210 |
318 | 7×10241 | 4.42×1026 | 1.6×10215 |
313 | 4.7×10246 | 1.02×1027 | 4.6×10219 |
308 | 4.5×10251 | 2.41×1027 | 1.9×10224 |
303 | 6.4×10256 | 5.86×1027 | 1.1×10229 |
298 | 1.4×10262 | 1.47×1028 | 9.3×10233 |
293 | 4.4×10267 | 3.8×1028 | 1.2×10239 |
288 | 2.3×10273 | 1.02×1029 | 2.2×10244 |
283 | 1.9×10279 | 2.82×1029 | 6.6×10249 |
278 | 2.5×10285 | 8.08×1029 | 3.1×10255 |
273 | 5.7×10291 | 2.41×1030 | 2.4×10261 |
名称 | 化学式 | Joback法基团分解 | Constantinous法基团分解 | Benson法基团分解 | 马沛生法基团分解 | ||||
---|---|---|---|---|---|---|---|---|---|
基团类型 | 数量 | 基团类型 | 数量 | 基团类型 | 数量 | 基团类型 | 数量 | ||
美罗培南 | C17H25N3O5S | CH3(1) | 4 | CH3(1)(一级) | 2 | CH3—(C) | 2 | CH3(1) | 3 |
CH(3) | 1 | CH2(2)(一级) | 1 | CH3—(N) | 2 | CH2(2)R | 2 | ||
C(3) | 2 | CH(3)(一级) | 6 | CH2—(2C) | 1 | CH(3)R | 5 | ||
CH2(ss)(2) | 2 | CC(4)(一级) | 1 | CH2—(C,N) | 1 | C(3)R | 2 | ||
OH(1) | 1 | COOH(1)(一级) | 1 | CH—(2C,O) | 1 | CHOH(2) | 1 | ||
CO(2) | 1 | CH2NH(2)(一级) | 1 | CH—(2C,N) | 2 | CO(2) | 1 | ||
CO(ss)(2) | 1 | CON(CH3)2(1)(一级) | 1 | CH—(2C,S) | 1 | CO(2)R | 1 | ||
COOH(1) | 1 | CO(2)(一级)缺 | 1 | CH—(3C) | 1 | COOH(1) | 1 | ||
NH(ss)(2) | 1 | N(3)(一级)缺 | 1 | C—(C,N) | 1 | N(3) | 1 | ||
N(3) | 2 | S(2)(一级)缺 | 1 | C—(C,S) | 1 | NH(2)R | 1 | ||
S(2) | 1 | CHnCHm—CHpCHk[k,n,m,p∈(0,2)] | 1 | CO—(C,N) | 2 | N(3)R | 1 | ||
四元环(二级) | 1 | CO—(C,O) | 1 | S(2) | 1 | ||||
五元环(二级) | 2 | OH—(CO) | 1 | ||||||
CHOH(2)(二级) | 1 | OH—(C) | 1 | ||||||
(CHm)R-S-(CHn)R[m,n∈(0,2)](二级) | 1 | N—(2C,CO) | 2 | ||||||
(CHm)R-NHp-(CHn)R[m,n,p∈(0,2)](二级) | 2 | NH—(2C) | 1 | ||||||
S—(2C) | 1 | ||||||||
保护美罗培南 | C32H35N5O11S | CH3(1) | 4 | CH3(1)(一级) | 2 | CH3—(C) | 2 | CH3(1) | 3 |
CH2(2) | 2 | CH2(2)(一级) | 1 | CH3—(N) | 2 | CH2(2)R | 2 | ||
CH(3) | 1 | CH(3)(一级) | 6 | CH2—(2C) | 1 | CH(3)R | 5 | ||
C(3) | 2 | CC(4)(一级) | 1 | CH2—(Cb,O) | 2 | C(3)R | 2 | ||
CH2(ss)(2) | 2 | (CH)A(2)(一级) | 8 | CH2—(C,N) | 1 | CH3(1)RC | 1 | ||
CH(ss)(3) | 5 | (C)ACH2(3)(一级) | 2 | CH—(2C,CO) | 1 | CH(2)A | 8 | ||
CH(ds)(2) | 8 | OH(1)(一级) | 1 | CH—(2C,O) | 1 | C(3)A | 4 | ||
C(ds)(3) | 4 | COO(2)(一级) | 1 | CH—(2C,N) | 2 | CH2(2)AC | 2 | ||
OH(1) | 1 | CH2N(2)(一级) | 1 | CH—(2C,S) | 1 | CHOH(2) | 1 | ||
O(2) | 1 | (C)ANO2(2)(一级) | 2 | CH—(3C) | 1 | CO(2) | 1 | ||
CO(2) | 2 | CON(CH3)2(1)(一级) | 1 | Cb—(C) | 2 | CO(2)R | 1 | ||
CO(ss)(2) | 1 | O(2)(一级)缺 | 1 | CbH | 8 | COO(2)RC | 2 | ||
COO(2) | 1 | CO(2)(一级)缺 | 2 | Cb(NO2) | 2 | N(3) | 1 | ||
N(3) | 3 | N(3)(一级)缺 | 1 | C—(C,N) | 1 | N(3)R | 2 | ||
NO2(1) | 2 | S(2)(一级)缺 | 1 | C—(C,S) | 1 | NO2(1) | 2 | ||
S(2) | 1 | CHnCHm—CHpCHk[k,n,m,p∈(0,2)] | 1 | CO—(C,N) | 2 | S(2) | 1 | ||
四元环(二级) | 1 | CO—(C,O) | 1 | ||||||
五元环(二级) | 2 | CO—(O,N) | 1 | ||||||
六元环(二级) | 2 | O—(C,O) | 2 | ||||||
CHOH(2)(二级) | 1 | OH—(C) | 1 | ||||||
(CHm)R—S—(CHn)R[m,n∈(0,2)](二级) | 1 | O(NO2)—(C) | 4 | ||||||
(CHm)R—NHp—(CHn)R[m,n,p∈(0,2)](二级) | 2 | N—(2C,CO) | 3 | ||||||
N(NO2)—(Cb) | 2 | ||||||||
S—(2C) | 1 | ||||||||
母核 | C29H27N2O10P | CH3(1) | 2 | CH3(1)(一级) | 2 | CH | 2 | CH3(1) | 1 |
CH2(2) | 1 | CH(3)(一级) | 4 | CH2—(Cb,O) | 1 | CH(3)R | 3 | ||
CH(3) | 1 | CC(4)(一级) | 1 | CH— (2C,CO) | 1 | C(3)R | 2 | ||
C(3) | 2 | (CH)A(2)(一级) | 14 | CH—(2C,O ) | 1 | CH3(1)RC | 1 | ||
CH(ss)(3) | 3 | (C)A(3)(一级) | 2 | CH—(2C,N) | 1 | CH(2)A | 14 | ||
CH(ds)(2) | 14 | (C)ACH2(3)(一级) | 1 | CH—(3C) | 1 | C(3)A | 4 | ||
C(ds)(3) | 4 | OH(1)(一级) | 1 | Cb—(C) | 1 | CH2(2)AC | 1 | ||
OH(1) | 1 | COO(2)(一级) | 1 | Cb—(O) | 2 | CHOH(2) | 1 | ||
O(2) | 3 | (C)ANO2(2)(一级) | 1 | CbH | 14 | CO(2)R | 1 | ||
CO(ss)(2) | 1 | O(2)(一级)缺 | 3 | Cb(NO2) | 1 | COO(2)RC | 1 | ||
COO(2) | 1 | CO(2)(一级)缺 | 1 | C— (C,N) | 1 | O(2) | 1 | ||
O(1) | 1 | N(3)(一级)缺 | 1 | C—(C,O) | 1 | O(2)AC | 2 | ||
N(3) | 1 | PO(3)(一级)缺 | 1 | CO—(C,N) | 1 | N(3)R | 1 | ||
NO2(1) | 1 | CHnCHm—CHpCHk[k,n,m,p∈(0,2)] | 1 | CO—(C,O) | 1 | NO2(1) | 1 | ||
P(5)缺 | 1 | 四元环(二级) | 1 | O—(C,CO) | 1 | PO(3)缺 | 1 | ||
五元环(二级) | 1 | O—(C,PO) | 3 | ||||||
六元环(二级) | 3 | OH—(C) | 1 | ||||||
CHOH(2)(二级) | 1 | O(NO2)—(C) | 2 | ||||||
(CHm)R—NHp—(CHn)R[m,n,p∈(0,2)](二级) | 1 | N—(2C,CO) | 1 | ||||||
N(NO2)—(Cb) | 1 | ||||||||
PO—(3O) | 1 | ||||||||
侧链 | C15H19N3O5S | CH3(1) | 2 | CH2(2)(一级) | 1 | CH3—(N) | 2 | CH3(1) | 2 |
CH2(2) | 1 | CH(3)(一级) | 2 | CH2—(2C) | 1 | CH2(2)R | 2 | ||
CH2(ss)(2) | 2 | (CH)A(2)(一级) | 4 | CH2—(Cb,O) | 1 | CH(3)R | 2 | ||
CH(ss)(3) | 2 | (C)ACH2(3)(一级) | 1 | CH2—(C,N) | 1 | CH(2)A | 4 | ||
CH(ds)(2) | 4 | CH2N(2)(一级) | 1 | CH—(2C,N) | 1 | C(3)A | 2 | ||
C(ds)(3) | 2 | (C)ANO2(2)(一级) | 1 | CH—(2C,S) | 1 | CH2(2)AC | 1 | ||
O(2) | 1 | CON(CH3)2(1)(一级) | 1 | Cb—(C) | 1 | CO(2) | 1 | ||
CO(2) | 2 | O(2)(一级)缺 | 1 | CbH | 4 | COO(2)RC | 1 | ||
N(3) | 2 | CO(2)(一级)缺 | 1 | Cb(NO2) | 1 | N(3) | 1 | ||
NO2(1) | 1 | SH(1)(一级)缺 | 1 | CO—(C,N) | 1 | N(3)R | 1 | ||
SH(1) | 1 | 五元环(二级) | 1 | CO—(O,N) | 1 | NO2(1) | 1 | ||
六元环(二级) | 1 | O—(C,CO) | 1 | SH(1)RC | 1 | ||||
(CHm)R—NHp—(CHn)R[m,n,p∈(0,2)](二级) | 1 | O(NO2) —(C) | 2 | ||||||
N—(2C,CO) | 2 | ||||||||
N(NO2) —(Cb) | 1 | ||||||||
SH—(C) | 1 | ||||||||
磷酸二苯酯 | C12H11O4P | CH(ds)(2) | 10 | (CH)A(2)(一级) | 10 | Cb—(O) | 2 | CH(2)A | 10 |
C(ds)(3) | 2 | (C)A(3)(一级) | 2 | CbH | 10 | C(3)A | 2 | ||
OH(1) | 1 | OH(1)(一级) | 1 | O—(C,PO) | 2 | O(2)AC | 2 | ||
O(2) | 2 | O(2)(一级)缺 | 2 | OH—(P) | 1 | PO(3)缺 | 1 | ||
O(1) | 1 | PO(3)(一级)缺 | 1 | PO—(3O) | 1 | OH(1)缺 | 1 | ||
P(5)缺 | 1 | 六元环(二级) | 2 | ||||||
对甲苯胺 | C7H9N | CH3(1) | 1 | (CH)A(2)(一级) | 4 | CH3—(Cb) | 1 | CH(2)A | 4 |
CH(ds)(2) | 4 | (C)ACH3(2)(一级) | 1 | Cb—(C) | 1 | C(3)A | 2 | ||
C(ds)(3) | 2 | (C)ANH2(2)(一级) | 1 | Cb—(N) | 1 | CH3(1)AC | 1 | ||
NH2(1) | 1 | 六元环(二级) | 1 | CbH | 4 | NH2(1)AC | 1 | ||
NH2—(Cb) | 1 |
表A1 采用Joback法、Constantinous法、Benson法和马沛生法对美罗培南加氢反应体系组分进行基团分解
Table A1 Group analysis of meropenem hydrogenation system by Joback method, Constantinous method, Benson method & Ma Peisheng method
名称 | 化学式 | Joback法基团分解 | Constantinous法基团分解 | Benson法基团分解 | 马沛生法基团分解 | ||||
---|---|---|---|---|---|---|---|---|---|
基团类型 | 数量 | 基团类型 | 数量 | 基团类型 | 数量 | 基团类型 | 数量 | ||
美罗培南 | C17H25N3O5S | CH3(1) | 4 | CH3(1)(一级) | 2 | CH3—(C) | 2 | CH3(1) | 3 |
CH(3) | 1 | CH2(2)(一级) | 1 | CH3—(N) | 2 | CH2(2)R | 2 | ||
C(3) | 2 | CH(3)(一级) | 6 | CH2—(2C) | 1 | CH(3)R | 5 | ||
CH2(ss)(2) | 2 | CC(4)(一级) | 1 | CH2—(C,N) | 1 | C(3)R | 2 | ||
OH(1) | 1 | COOH(1)(一级) | 1 | CH—(2C,O) | 1 | CHOH(2) | 1 | ||
CO(2) | 1 | CH2NH(2)(一级) | 1 | CH—(2C,N) | 2 | CO(2) | 1 | ||
CO(ss)(2) | 1 | CON(CH3)2(1)(一级) | 1 | CH—(2C,S) | 1 | CO(2)R | 1 | ||
COOH(1) | 1 | CO(2)(一级)缺 | 1 | CH—(3C) | 1 | COOH(1) | 1 | ||
NH(ss)(2) | 1 | N(3)(一级)缺 | 1 | C—(C,N) | 1 | N(3) | 1 | ||
N(3) | 2 | S(2)(一级)缺 | 1 | C—(C,S) | 1 | NH(2)R | 1 | ||
S(2) | 1 | CHnCHm—CHpCHk[k,n,m,p∈(0,2)] | 1 | CO—(C,N) | 2 | N(3)R | 1 | ||
四元环(二级) | 1 | CO—(C,O) | 1 | S(2) | 1 | ||||
五元环(二级) | 2 | OH—(CO) | 1 | ||||||
CHOH(2)(二级) | 1 | OH—(C) | 1 | ||||||
(CHm)R-S-(CHn)R[m,n∈(0,2)](二级) | 1 | N—(2C,CO) | 2 | ||||||
(CHm)R-NHp-(CHn)R[m,n,p∈(0,2)](二级) | 2 | NH—(2C) | 1 | ||||||
S—(2C) | 1 | ||||||||
保护美罗培南 | C32H35N5O11S | CH3(1) | 4 | CH3(1)(一级) | 2 | CH3—(C) | 2 | CH3(1) | 3 |
CH2(2) | 2 | CH2(2)(一级) | 1 | CH3—(N) | 2 | CH2(2)R | 2 | ||
CH(3) | 1 | CH(3)(一级) | 6 | CH2—(2C) | 1 | CH(3)R | 5 | ||
C(3) | 2 | CC(4)(一级) | 1 | CH2—(Cb,O) | 2 | C(3)R | 2 | ||
CH2(ss)(2) | 2 | (CH)A(2)(一级) | 8 | CH2—(C,N) | 1 | CH3(1)RC | 1 | ||
CH(ss)(3) | 5 | (C)ACH2(3)(一级) | 2 | CH—(2C,CO) | 1 | CH(2)A | 8 | ||
CH(ds)(2) | 8 | OH(1)(一级) | 1 | CH—(2C,O) | 1 | C(3)A | 4 | ||
C(ds)(3) | 4 | COO(2)(一级) | 1 | CH—(2C,N) | 2 | CH2(2)AC | 2 | ||
OH(1) | 1 | CH2N(2)(一级) | 1 | CH—(2C,S) | 1 | CHOH(2) | 1 | ||
O(2) | 1 | (C)ANO2(2)(一级) | 2 | CH—(3C) | 1 | CO(2) | 1 | ||
CO(2) | 2 | CON(CH3)2(1)(一级) | 1 | Cb—(C) | 2 | CO(2)R | 1 | ||
CO(ss)(2) | 1 | O(2)(一级)缺 | 1 | CbH | 8 | COO(2)RC | 2 | ||
COO(2) | 1 | CO(2)(一级)缺 | 2 | Cb(NO2) | 2 | N(3) | 1 | ||
N(3) | 3 | N(3)(一级)缺 | 1 | C—(C,N) | 1 | N(3)R | 2 | ||
NO2(1) | 2 | S(2)(一级)缺 | 1 | C—(C,S) | 1 | NO2(1) | 2 | ||
S(2) | 1 | CHnCHm—CHpCHk[k,n,m,p∈(0,2)] | 1 | CO—(C,N) | 2 | S(2) | 1 | ||
四元环(二级) | 1 | CO—(C,O) | 1 | ||||||
五元环(二级) | 2 | CO—(O,N) | 1 | ||||||
六元环(二级) | 2 | O—(C,O) | 2 | ||||||
CHOH(2)(二级) | 1 | OH—(C) | 1 | ||||||
(CHm)R—S—(CHn)R[m,n∈(0,2)](二级) | 1 | O(NO2)—(C) | 4 | ||||||
(CHm)R—NHp—(CHn)R[m,n,p∈(0,2)](二级) | 2 | N—(2C,CO) | 3 | ||||||
N(NO2)—(Cb) | 2 | ||||||||
S—(2C) | 1 | ||||||||
母核 | C29H27N2O10P | CH3(1) | 2 | CH3(1)(一级) | 2 | CH | 2 | CH3(1) | 1 |
CH2(2) | 1 | CH(3)(一级) | 4 | CH2—(Cb,O) | 1 | CH(3)R | 3 | ||
CH(3) | 1 | CC(4)(一级) | 1 | CH— (2C,CO) | 1 | C(3)R | 2 | ||
C(3) | 2 | (CH)A(2)(一级) | 14 | CH—(2C,O ) | 1 | CH3(1)RC | 1 | ||
CH(ss)(3) | 3 | (C)A(3)(一级) | 2 | CH—(2C,N) | 1 | CH(2)A | 14 | ||
CH(ds)(2) | 14 | (C)ACH2(3)(一级) | 1 | CH—(3C) | 1 | C(3)A | 4 | ||
C(ds)(3) | 4 | OH(1)(一级) | 1 | Cb—(C) | 1 | CH2(2)AC | 1 | ||
OH(1) | 1 | COO(2)(一级) | 1 | Cb—(O) | 2 | CHOH(2) | 1 | ||
O(2) | 3 | (C)ANO2(2)(一级) | 1 | CbH | 14 | CO(2)R | 1 | ||
CO(ss)(2) | 1 | O(2)(一级)缺 | 3 | Cb(NO2) | 1 | COO(2)RC | 1 | ||
COO(2) | 1 | CO(2)(一级)缺 | 1 | C— (C,N) | 1 | O(2) | 1 | ||
O(1) | 1 | N(3)(一级)缺 | 1 | C—(C,O) | 1 | O(2)AC | 2 | ||
N(3) | 1 | PO(3)(一级)缺 | 1 | CO—(C,N) | 1 | N(3)R | 1 | ||
NO2(1) | 1 | CHnCHm—CHpCHk[k,n,m,p∈(0,2)] | 1 | CO—(C,O) | 1 | NO2(1) | 1 | ||
P(5)缺 | 1 | 四元环(二级) | 1 | O—(C,CO) | 1 | PO(3)缺 | 1 | ||
五元环(二级) | 1 | O—(C,PO) | 3 | ||||||
六元环(二级) | 3 | OH—(C) | 1 | ||||||
CHOH(2)(二级) | 1 | O(NO2)—(C) | 2 | ||||||
(CHm)R—NHp—(CHn)R[m,n,p∈(0,2)](二级) | 1 | N—(2C,CO) | 1 | ||||||
N(NO2)—(Cb) | 1 | ||||||||
PO—(3O) | 1 | ||||||||
侧链 | C15H19N3O5S | CH3(1) | 2 | CH2(2)(一级) | 1 | CH3—(N) | 2 | CH3(1) | 2 |
CH2(2) | 1 | CH(3)(一级) | 2 | CH2—(2C) | 1 | CH2(2)R | 2 | ||
CH2(ss)(2) | 2 | (CH)A(2)(一级) | 4 | CH2—(Cb,O) | 1 | CH(3)R | 2 | ||
CH(ss)(3) | 2 | (C)ACH2(3)(一级) | 1 | CH2—(C,N) | 1 | CH(2)A | 4 | ||
CH(ds)(2) | 4 | CH2N(2)(一级) | 1 | CH—(2C,N) | 1 | C(3)A | 2 | ||
C(ds)(3) | 2 | (C)ANO2(2)(一级) | 1 | CH—(2C,S) | 1 | CH2(2)AC | 1 | ||
O(2) | 1 | CON(CH3)2(1)(一级) | 1 | Cb—(C) | 1 | CO(2) | 1 | ||
CO(2) | 2 | O(2)(一级)缺 | 1 | CbH | 4 | COO(2)RC | 1 | ||
N(3) | 2 | CO(2)(一级)缺 | 1 | Cb(NO2) | 1 | N(3) | 1 | ||
NO2(1) | 1 | SH(1)(一级)缺 | 1 | CO—(C,N) | 1 | N(3)R | 1 | ||
SH(1) | 1 | 五元环(二级) | 1 | CO—(O,N) | 1 | NO2(1) | 1 | ||
六元环(二级) | 1 | O—(C,CO) | 1 | SH(1)RC | 1 | ||||
(CHm)R—NHp—(CHn)R[m,n,p∈(0,2)](二级) | 1 | O(NO2) —(C) | 2 | ||||||
N—(2C,CO) | 2 | ||||||||
N(NO2) —(Cb) | 1 | ||||||||
SH—(C) | 1 | ||||||||
磷酸二苯酯 | C12H11O4P | CH(ds)(2) | 10 | (CH)A(2)(一级) | 10 | Cb—(O) | 2 | CH(2)A | 10 |
C(ds)(3) | 2 | (C)A(3)(一级) | 2 | CbH | 10 | C(3)A | 2 | ||
OH(1) | 1 | OH(1)(一级) | 1 | O—(C,PO) | 2 | O(2)AC | 2 | ||
O(2) | 2 | O(2)(一级)缺 | 2 | OH—(P) | 1 | PO(3)缺 | 1 | ||
O(1) | 1 | PO(3)(一级)缺 | 1 | PO—(3O) | 1 | OH(1)缺 | 1 | ||
P(5)缺 | 1 | 六元环(二级) | 2 | ||||||
对甲苯胺 | C7H9N | CH3(1) | 1 | (CH)A(2)(一级) | 4 | CH3—(Cb) | 1 | CH(2)A | 4 |
CH(ds)(2) | 4 | (C)ACH3(2)(一级) | 1 | Cb—(C) | 1 | C(3)A | 2 | ||
C(ds)(3) | 2 | (C)ANH2(2)(一级) | 1 | Cb—(N) | 1 | CH3(1)AC | 1 | ||
NH2(1) | 1 | 六元环(二级) | 1 | CbH | 4 | NH2(1)AC | 1 | ||
NH2—(Cb) | 1 |
1 | 国家药典委员会. 中华人民共和国药典: 2015年版二部[M]. 北京: 中国医药科技出版社, 2015:841-843. |
Chinese Pharmacopoeia Commission. Chinese Pharmacopoeia(Version 2015 Part 2)[M]. Beijing:China Medical Science and Technology Press, 2015:841-843. | |
2 | Shi H S, Han X Y, Zheng C S. Evolution of CT manifestations in a patient recovered from 2019 novel coronavirus (2019-nCoV) pneumonia in Wuhan, China[J]. Radiology, 2020, 295(1): 20. |
3 | Sunagawa M, Matsumura H, Inoue T, et al. A novel carbapenem antibiotic, SM-7338 structure-activity relationships[J]. The Journal of Antibiotics, 1990, 43(5): 519-532. |
4 | Tewari N, Nizar H, Rai B P, et al. An improved procedure for preparation of carbapenem antibiotic: meropenem[J]. Organic Process Research & Development, 2007, 11(4): 773-775. |
5 | 程明友. 美罗培南催化加氢反应用Pd/C催化剂的失活及再生研究[D]. 北京: 北京化工大学, 2018. |
Cheng M Y. Deactivation and regeneration of Pd/C catalysts for catalytic hydrogenation of meropenem[D]. Beijing: Beijing University of Chemical Technology, 2018. | |
6 | Seki M, Furutani T, Miyake T, et al. A novel synthesis of a key intermediate for penems and carbapenems utilizing lipase-catalyzed kinetic resolution[J]. Tetrahedron: Asymmetry, 1996, 7(5): 1241-1244. |
7 | 胡来兴. 美罗培南的合成研究与1, 3, 4-噻二唑碳青霉烯类新化合物的合成及抗菌活性测定[D]. 北京: 北京协和医学院, 2000. |
Hu L X. Meropenem synthesis and the synthesis of 1,3,4- thiadiazole carbapenems and the determination of their antimicrobial activity[D]. Beijing: Chinese Peking Union Medical College, 2000. | |
8 | 丁海祥. 美罗培南中间体的合成工艺[D]. 北京: 北京化工大学, 2012. |
Ding H X. Synthesis of the intermediate of meropenem[D]. Beijing: Beijing University of Chemical Technology, 2012. | |
9 | 张京伟. 美罗培南合成工艺研究[D]. 北京: 北京化工大学, 2008. |
Zhang J W. Study on the synthesis process of meropenem[D]. Beijing: Beijing University of Chemical Technology, 2008. | |
10 | Hugonnet J E, Tremblay L W, Boshoff H I, et al. Meropenem-clavulanate is effective against extensively drug-resistant mycobacterium tuberculosis[J]. Science, 2009, 323(5918): 1215-1218. |
11 | Harris P N A, Tambyah P A, Lye D C, et al. Effect of piperacillin-tazobactam vs meropenem on 30-day mortality for patients with E. coli or klebsiella pneumoniae bloodstream infection and ceftriaxone resistance: a randomized clinical trial[J]. JAMA the Journal of the American Medical Association, 2018, 320(10): 984-994. |
12 | Wiseman L R, Balfour J A. Ceftibuten. A review of its antibacterial activity, pharmacokinetic properties and clinical efficacy[J]. Drugs, 1994, 47(5): 784-808. |
13 | 刘华祥, 孟庆伟. 1β-甲基碳青霉烯类抗生素美罗培南合成进展[J]. 中国抗生素杂志, 2009, 34(5): 257-262. |
Liu H X, Meng Q W. Progress in synthesis of 1β-methyl carbapenem antibiotic meropenem[J]. Chinese Journal of Antibiotics, 2009, 34(5): 257-262. | |
14 | 李彬, 史继星, 姜爽, 等. 高收率美罗培南侧链中间体的合成[J]. 化工进展, 2020, 39(3): 1129-1136. |
Li B, Shi J X, Jiang S, et al. Synthesis of meropenem side chain intermediates with high yield[J]. Chemical Industry and Engineering Progress, 2020, 39(3): 1129-1136. | |
15 | Kumagai T, Tamai S, Abe T, et al. New straight forward synthesis and characterization of a unique 1β-methylcarbapenem antibiotic biapenem bearing a σ-symmetric bicyclotriazoliumthio group as the pendant moiety[J]. The Journal of Organic Chemistry, 1998, 63(23): 8145-8149. |
16 | Isidro-Llobet A, Álvarez M, Albericio F. Semipermanent p-nitrobenzyloxycarbonyl (pNZ) protection of orn and lys side chains: prevention of undesired α-Fmoc removal and application to the synthesis of cyclic peptides[J]. Tetrahedron Letters, 2005, 46(45): 7733-7736. |
17 | 马沛生, 李永红, 杨长生. 化工热力学[M]. 2版. 北京: 化学工业出版社, 2009: 244-257. |
Ma P S, Li Y H, Yang C S. Chemical Engineering Thermodynamics [M]. 2nded. Beijing: Chemical Industry Press, 2009: 244-257. | |
18 | 马沛生. 化工数据[M]. 北京: 中国石化出版社, 2003: 108-111. |
Ma P S. Chemical Engineering Data[M]. Beijing: China Petrochemical Press, 2003: 108-111. | |
19 | Poling B E, Prausnitz J M, O'Connell J P. 气液物性估算手册[M]. 赵红玲, 王凤坤, 陈圣坤, 译. 北京: 化学工业出版社, 2006: 570-574. |
Poling B E, Prausnitz J M, O'Connell J P. Properties of Gases and Liquids[M]. Zhao H L,Wang F K,Chen S K, trans. Beijing: Chemical Industry Press, 2006: 570-574. | |
20 | 马沛生, 许文, 刘贻胜, 等. 用官能团法估算沸点下的蒸发焓[J]. 石油化工, 1992, 21(9): 613-617. |
Ma P S, Xu W, Liu Y S, et al. Estimation of enthalpy of vaporization at boiling point with functional group method[J]. Petrochemical Technology, 1992, 21(9): 613-617. | |
21 | 冷建飞, 温浩, 赵月红. 基团贡献法物性估算中分子结构自动拆解的多解问题[J]. 计算机与应用化学, 2012, 29(6): 758-762. |
Leng J F, Wen H, Zhao Y H. Multi-solution of molecular structure automatic disassembly in group contribution method[J]. Computers and Applied Chemistry, 2012, 29(6): 758-762. | |
22 | 王修纲, 沈阳, 田冰虎, 等. 环丁烯砜合成反应的基团贡献法热力学分析[J]. 化工学报, 2016, 67(4): 1103-1109. |
Wang X G, Shen Y, Tian B H, et al. Thermodynamic analysis on synthesis of sulfolene by group-contribution method[J]. CIESC Journal, 2016, 67(4): 1103-1109. | |
23 | 杜治平, 林志坤, 黄丽明, 等. 二苯醚水解耦合苯酚氧化羰基化合成碳酸二苯酯的热力学分析[J]. 石油化工, 2012, 41(8): 894-900. |
Du Z P, Lin Z K, Huang L M, et al. Thermodynamic analysis of coupling of oxidative carbonylation of phenol with hydrolysis of diphenyl ether[J]. Petrochemical Technology, 2012, 41(8): 894-900. | |
24 | 李飞飞, 贾广信, 李婷. 甘油和乙醇制复合甘油醚的热力学数据估算与反应分析[J]. 石油化工, 2016, 45(3): 311-318. |
Li F F, Jia G X, Li T. Thermodynamics calculation and analysis for synthesis of composite glycerin ethers from glycerin and ethanol[J]. Petrochemical Technology, 2016, 45(3): 311-318. | |
25 | 崔雪霞, 王桂荣, 赵茜, 等. 尿素法合成甲苯二氨基甲酸苯酯反应体系的热力学分析[J]. 化工学报, 2015, 66(9): 3367-3376. |
Cui X X, Wang G R, Zhao Q, et al. Thermodynamic analysis on synthesis of diphenyl toluene dicarbamate via urea route[J]. CIESC Journal, 2015, 66(9): 3367-3376. | |
26 | 王丽苹, 赵粒成, 兰开顺, 等. 碳酸二甲酯与1, 5-戊二醇制备聚(碳酸1, 5-戊二醇酯)二醇预聚反应的热力学计算与分析[J]. 精细石油化工, 2017, 34(1): 64-69. |
Wang L P, Zhao L C, Lan K S, et al. Thermodynamics of prepolymerization between dimethyl carbonate and 1, 5-pentanediol to poly(1, 5-pentanediol)carbonate diol[J]. Speciality Petrochemicals, 2017, 34(1): 64-69. | |
27 | 满愿, 张书芳, 崔丽凤, 等. 烷基胺羰基化反应的热力学计算与分析[J]. 化学工程, 2016, 44(7): 30-33. |
Man Y, Zhang S F, Cui L F, et al. Thermodynamic calculation and analysis of alkyl amine carbonylation reaction system[J]. Chemical Engineering (China), 2016, 44(7): 30-33. | |
28 | 薛晓军, 贾广信, 何俊辉, 等. 二甲醚与合成气反应制乙醇的热力学计算与分析[J]. 化工进展, 2014, 33(5): 1160-1163. |
Xue X J, Jia G X, He J H, et al. Thermodynamics of ethanol synthesis from dimethyl ether and syngas[J]. Chemical Industry and Engineering Progress, 2014, 33(5): 1160-1163. | |
29 | 孙成伟, 郭翠梨, 叶陈良, 等. 醋酸甲酯加氢反应的热力学计算与分析[J]. 石油化工, 2015, 44(4): 409-414. |
Sun C W, Guo C L, Ye C L, et al. Thermodynamic analysis for hydrogenation of methyl acetate[J]. Petrochemical Technology, 2015, 44(4): 409-414. | |
30 | 傅献彩, 沈文霞, 姚天扬, 等. 物理化学[M]. 5版. 北京: 高等教育出版社, 2005: 360. |
Fu X C, Shen W X, Yao T Y, et al. Physical Chemistry [M]. 5th ed. Beijing: Higher Education Press, 2005: 360. | |
31 | Hao P P, Xie M J, Chen S Y, et al. Surrounded catalysts prepared by ion-exchange inverse loading[J]. Science Advances, 2020, 6(20): eaay7031. |
32 | 张志炳, 田洪舟, 张锋, 等. 多相反应体系的微界面强化简述[J]. 化工学报, 2018, 69(1): 44-49. |
Zhang Z B, Tian H Z, Zhang F, et al. Overview of microinterface intensification in multiphase reaction systems[J]. CIESC Journal, 2018, 69(1): 44-49. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 曹跃, 余冲, 李智, 杨明磊. 工业数据驱动的加氢裂化装置多工况切换过渡状态检测[J]. 化工学报, 2023, 74(9): 3841-3854. |
[3] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
[4] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[5] | 姚晓宇, 沈俊, 李健, 李振兴, 康慧芳, 唐博, 董学强, 公茂琼. 流体气液临界参数测量方法研究进展[J]. 化工学报, 2023, 74(5): 1847-1861. |
[6] | 陈科, 杜理, 曾英, 任思颖, 于旭东. 四元体系LiCl+MgCl2+CaCl2+H2O 323.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(5): 1896-1903. |
[7] | 张江淮, 赵众. 碳三加氢装置鲁棒最小协方差约束控制及应用[J]. 化工学报, 2023, 74(3): 1216-1227. |
[8] | 毛元敬, 杨智, 莫松平, 郭浩, 陈颖, 罗向龙, 陈健勇, 梁颖宗. C6~C10烷醇的SAFT-VR Mie状态方程参数回归及其热物性研究[J]. 化工学报, 2023, 74(3): 1033-1041. |
[9] | 梁梦欣, 郭艳, 王世栋, 张宏伟, 袁珮, 鲍晓军. 氮化碳负载钯催化剂的制备及对SBS选择性催化加氢性能的研究[J]. 化工学报, 2023, 74(2): 766-775. |
[10] | 程文婷, 李杰, 徐丽, 程芳琴, 刘国际. AlCl3·6H2O在FeCl3、CaCl2、KCl及KCl–FeCl3溶液中溶解度的实验及预测[J]. 化工学报, 2023, 74(2): 642-652. |
[11] | 沈辰阳, 孙楷航, 张月萍, 刘昌俊. 二氧化碳加氢合成甲醇氧化铟及其负载金属催化剂研究进展[J]. 化工学报, 2023, 74(1): 145-156. |
[12] | 黄宽, 马永德, 蔡镇平, 曹彦宁, 江莉龙. 油脂催化加氢转化制备第二代生物柴油研究进展[J]. 化工学报, 2023, 74(1): 380-396. |
[13] | 杨松涛, 李东洋, 牛玉清, 李鑫钢, 康绍辉, 李洪, 叶开凯, 周志全, 高鑫. 氟化物势能函数和热力学性质的分子模拟研究进展[J]. 化工学报, 2022, 73(9): 3828-3840. |
[14] | 张军, 胡升, 顾菁, 袁浩然, 陈勇. 甲醇体系电镀污泥衍生磁性多金属材料催化糠醛加氢转化[J]. 化工学报, 2022, 73(7): 2996-3006. |
[15] | 孙哲, 金华强, 李康, 顾江萍, 黄跃进, 沈希. 基于知识数据化表达的制冷空调系统故障诊断方法[J]. 化工学报, 2022, 73(7): 3131-3144. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||