化工学报 ›› 2021, Vol. 72 ›› Issue (5): 2392-2412.DOI: 10.11949/0438-1157.20201325
收稿日期:
2020-07-27
修回日期:
2021-01-09
出版日期:
2021-05-05
发布日期:
2021-05-05
通讯作者:
向文国
作者简介:
刘一君(1992—),男,博士研究生,基金资助:
LIU Yijun(),CHEN Shiyi,HU Jun,ZHOU Wei,XIANG Wenguo()
Received:
2020-07-27
Revised:
2021-01-09
Online:
2021-05-05
Published:
2021-05-05
Contact:
XIANG Wenguo
摘要:
化学链技术是目前能源技术研究的热点之一,其关键技术包括载体材料的制备和反应器的设计。综述了化学链技术的应用前景,总结了化学链反应器设计原理,回顾了目前世界上公开报道的设计完成、在建或已经运行的化学链反应器,归纳讨论了不同反应器设计细节的共同点及目的。开展以微小颗粒、纳米颗粒作为载体材料时,颗粒聚团在宏观反应器尺度下的流动传递规律、循环反应机理和系统运行控制特性的研究;开展反应器内颗粒流动-传递-反应耦合机制研究,建立多尺度统一模型;在全尺寸化学链反应器上进行系统自热实验研究;利用数值模拟方法研究和开发用于固体燃料转化过程的高效炭/灰分离器是未来化学链反应器发展需要关注的几个方面。
中图分类号:
刘一君, 陈时熠, 胡骏, 周威, 向文国. 化学链反应器研究进展[J]. 化工学报, 2021, 72(5): 2392-2412.
LIU Yijun, CHEN Shiyi, HU Jun, ZHOU Wei, XIANG Wenguo. Review on reactors for chemical looping process[J]. CIESC Journal, 2021, 72(5): 2392-2412.
文献 | 床型 | 热功率/kWth | 文献 | 床型 | 热功率/kWth |
---|---|---|---|---|---|
[ | 鼓泡床,快速床 | 10 | [ | 快速床,喷动床 | 50 |
[ | 快速床,循环流化床 | 100 | [ | 快速床,循环流化床 | 3000 |
[ | 鼓泡床,循环流化床 | 4000 | [ | 快速床,循环流化床 | 100 |
[ | 鼓泡床,快速床 | 12 | [ | 鼓泡床,快速床 | 8000 |
[ | 快速床,快速床 | 75 | [ | 快速床,循环流化床 | 10000 |
[ | 鼓泡床,快速床 | 8 | [ | 快速床,快速床 | 1000~20000 |
[ | 快速床,快速床 | 50 | [ | 多层鼓泡床,快速床 | 25 |
[ | 快速床,快速床 | 200 | [ | 鼓泡床,快速床 | 20 |
[ | 鼓泡床,快速床 | — | [ | 鼓泡床,快速床 | 200 |
[ | 鼓泡床,鼓泡床,鼓泡床 | 10 | [ | 鼓泡床,快速床 | 0.6 |
[ | 鼓泡床,快速床,过滤膜 | 2 | [ | 喷动床,快速床 | 1~10 |
[ | 移动床,鼓泡床,快速床 | 100~1000 | [ | 喷动床,鼓泡床,快速床 | 2 |
[ | 鼓泡床,鼓泡床 | 10 | [ | 鼓泡床,鼓泡床,快速床 | 5 |
[ | 鼓泡床 | 10 | [ | 鼓泡床,快速床 | 25 |
[ | 移动床,快速床 | 10~50 | [ | 鼓泡床,快速床 | 100 |
[ | 快速床,快速床 | 150 | [ | 移动床,快速床,鼓泡床 | — |
[ | 移动床,快速床 | 1.5 | [ | 移动床,快速床,鼓泡床 | — |
[ | 快速床,快速床 | 30 | [ | 快速床,鼓泡床,快速床 | 10 |
[ | 快速床,快速床 | 50 | [ | 快速床,快速床 | 5 |
[ | 快速床,快速床 | 300 | [ | 快速床,快速床 | 50 |
[ | 快速床,快速床 | 1700 | [ | 鼓泡床,快速床 | 10 |
[ | 移动床,快速床 | 25 | [ | 快速床,下行床,鼓泡床,快速床 | 30 |
[ | 快速床,回转床 | 120 | [ | 鼓泡床,快速床 | 10 |
[ | 快速床,循环流化床 | 10 | [ | 快速床,快速床 | — |
[ | 快速床,循环流化床 | 200 | [ | 移动床,回转床 | 3 |
[ | 多层鼓泡床,快速床 | 50 | [ | 移动床,回转床 | 1900 |
表1 国内外公开报道的设计完成、在建或运行的化学链反应器
Table 1 Domestic and foreign published chemical looping system (including design completed, on building and operated)
文献 | 床型 | 热功率/kWth | 文献 | 床型 | 热功率/kWth |
---|---|---|---|---|---|
[ | 鼓泡床,快速床 | 10 | [ | 快速床,喷动床 | 50 |
[ | 快速床,循环流化床 | 100 | [ | 快速床,循环流化床 | 3000 |
[ | 鼓泡床,循环流化床 | 4000 | [ | 快速床,循环流化床 | 100 |
[ | 鼓泡床,快速床 | 12 | [ | 鼓泡床,快速床 | 8000 |
[ | 快速床,快速床 | 75 | [ | 快速床,循环流化床 | 10000 |
[ | 鼓泡床,快速床 | 8 | [ | 快速床,快速床 | 1000~20000 |
[ | 快速床,快速床 | 50 | [ | 多层鼓泡床,快速床 | 25 |
[ | 快速床,快速床 | 200 | [ | 鼓泡床,快速床 | 20 |
[ | 鼓泡床,快速床 | — | [ | 鼓泡床,快速床 | 200 |
[ | 鼓泡床,鼓泡床,鼓泡床 | 10 | [ | 鼓泡床,快速床 | 0.6 |
[ | 鼓泡床,快速床,过滤膜 | 2 | [ | 喷动床,快速床 | 1~10 |
[ | 移动床,鼓泡床,快速床 | 100~1000 | [ | 喷动床,鼓泡床,快速床 | 2 |
[ | 鼓泡床,鼓泡床 | 10 | [ | 鼓泡床,鼓泡床,快速床 | 5 |
[ | 鼓泡床 | 10 | [ | 鼓泡床,快速床 | 25 |
[ | 移动床,快速床 | 10~50 | [ | 鼓泡床,快速床 | 100 |
[ | 快速床,快速床 | 150 | [ | 移动床,快速床,鼓泡床 | — |
[ | 移动床,快速床 | 1.5 | [ | 移动床,快速床,鼓泡床 | — |
[ | 快速床,快速床 | 30 | [ | 快速床,鼓泡床,快速床 | 10 |
[ | 快速床,快速床 | 50 | [ | 快速床,快速床 | 5 |
[ | 快速床,快速床 | 300 | [ | 快速床,快速床 | 50 |
[ | 快速床,快速床 | 1700 | [ | 鼓泡床,快速床 | 10 |
[ | 移动床,快速床 | 25 | [ | 快速床,下行床,鼓泡床,快速床 | 30 |
[ | 快速床,回转床 | 120 | [ | 鼓泡床,快速床 | 10 |
[ | 快速床,循环流化床 | 10 | [ | 快速床,快速床 | — |
[ | 快速床,循环流化床 | 200 | [ | 移动床,回转床 | 3 |
[ | 多层鼓泡床,快速床 | 50 | [ | 移动床,回转床 | 1900 |
1 | Hepworth T C. Oxygen for limelight[J]. Nature, 1892, 47(1208): 176-177. |
2 | Richter H J, Knoche K F. Reversibility of combustion processes[M]//ACS Symposium Series. Washington, D. |
C.: American Chemical Society, 1983: 71-85. | |
3 | Fan L S. Chemical Looping Systems for Fossil Energy Conversions[M]. Hoboken: John Wiley & Sons, Inc., 2010. |
4 | Breault R. Handbook of Chemical Looping Technology[M]. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, Boschstr, 2018. |
5 | Fan L S, Zeng L, Luo S W. Chemical-looping technology platform[J]. AIChE Journal, 2015, 61(1): 2-22. |
6 | Zeng L, Luo S W, Sridhar D, et al. Chemical looping processes—particle characterization, ionic diffusion-reaction mechanism and reactor engineering[J]. Reviews in Chemical Engineering, 2012, 28(1): 1-42. |
7 | Zeng L, Cheng Z, Fan J A, et al. Metal oxide redox chemistry for chemical looping processes[J]. Nature Reviews Chemistry, 2018, 2(11): 349-364. |
8 | Buelens L, Poelman H, Marin G B, et al. 110th anniversary: carbon dioxide and chemical looping: current research trends[J]. Industrial & Engineering Chemistry Research, 2019, 58(36): 16235-16257. |
9 | Salaudeen S A, Acharya B, Dutta A. CaO-based CO2 sorbents: a review on screening, enhancement, cyclic stability, regeneration and kinetics modelling[J]. Journal of CO2 Utilization, 2018, 23: 179-199. |
10 | Kumar S, Saxena S K. A comparative study of CO2 sorption properties for different oxides[J]. Materials for Renewable and Sustainable Energy, 2014, 3(3): 1-15. |
11 | Feng B, An H, Tan E. Screening of CO2 adsorbing materials for zero emission power generation systems[J]. Energy & Fuels, 2007, 21(2): 426-434. |
12 | Zhao H B, Tian X, Ma J C, et al. Development of tailor-made oxygen carriers and reactors for chemical looping processes at Huazhong University of Science & Technology[J]. International Journal of Greenhouse Gas Control, 2020, 93: 102898. |
13 | Zhao H B, Tian X, Ma J C, et al. Chemical looping combustion of coal in China: comprehensive progress, remaining challenges, and potential opportunities[J]. Energy & Fuels, 2020, 34(6): 6696-6734. |
14 | Tang Y T, You F Q. Life cycle environmental and economic analysis of pulverized coal oxy-fuel combustion combining with calcium looping process or chemical looping air separation[J]. Journal of Cleaner Production, 2018, 181: 271-292. |
15 | He Y D, Zhu L, Li L L, et al. Zero-energy penalty carbon capture and utilization for liquid fuel and power cogeneration with chemical looping combustion[J]. Journal of Cleaner Production, 2019, 235: 34-43. |
16 | Ogidiama O V, Abu Zahra M, Shamim T. Techno-economic analysis of a carbon capture chemical looping combustion power plant[J]. Journal of Energy Resources Technology, 2018, 140(11): 112004. |
17 | Navajas A, Mendiara T, Goñi V, et al. Life cycle assessment of natural gas fuelled power plants based on chemical looping combustion technology[J]. Energy Conversion and Management, 2019, 198: 111856. |
18 | Petrakopoulou F, Boyano A, Cabrera M, et al. Exergoeconomic and exergoenvironmental analyses of a combined cycle power plant with chemical looping technology[J]. International Journal of Greenhouse Gas Control, 2011, 5(3): 475-482. |
19 | Kale G R, Kulkarni B D, Bharadwaj K V. Chemical looping reforming of ethanol for syngas generation: a theoretical investigation[J]. International Journal of Energy Research, 2013, 37(6): 645-656. |
20 | Petrakopoulou F, Tsatsaronis G. Can carbon dioxide capture and storage from power plants reduce the environmental impact of electricity generation?[J]. Energy & Fuels, 2014, 28(8): 5327-5338. |
21 | Hurst T F, Cockerill T T, Florin N H. Life cycle greenhouse gas assessment of a coal-fired power station with calcium looping CO2 capture and offshore geological storage[J]. Energy & Environmental Science, 2012, 5(5): 7132. |
22 | Chisalita D A, Petrescu L, Cobden P, et al. Assessing the environmental impact of an integrated steel mill with post-combustion CO2 capture and storage using the LCA methodology[J]. Journal of Cleaner Production, 2019, 211: 1015-1025. |
23 | Yang Q C, Li X F, Yang Q, et al. Opportunities for CO2 utilization in coal to green fuel process: optimal design and performance evaluation[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(3): 1329-1342. |
24 | Petrescu L, Müller C R, Cormos C C. Life cycle assessment of natural gas-based chemical looping for hydrogen production[J]. Energy Procedia, 2014, 63: 7408-7420. |
25 | Heng L J, Xiao R, Zhang H Y. Life cycle assessment of hydrogen production via iron-based chemical-looping process using non-aqueous phase bio-oil as fuel[J]. International Journal of Greenhouse Gas Control, 2018, 76: 78-84. |
26 | Rolfe A, Huang Y, Haaf M, et al. Technical and environmental study of calcium carbonate looping versus oxy-fuel options for low CO2 emission cement plants[J]. International Journal of Greenhouse Gas Control, 2018, 75: 85-97. |
27 | Clarens F, Espí J J, Giraldi M R, et al. Life cycle assessment of CaO looping versus amine-based absorption for capturing CO2 in a subcritical coal power plant[J]. International Journal of Greenhouse Gas Control, 2016, 46: 18-27. |
28 | Wang Z, Li L L, Zhang G Q. Life cycle greenhouse gas assessment of hydrogen production via chemical looping combustion thermally coupled steam reforming[J]. Journal of Cleaner Production, 2018, 179: 335-346. |
29 | Petrescu L, Cormos C C. Environmental assessment of IGCC power plants with pre-combustion CO2 capture by chemical & calcium looping methods[J]. Journal of Cleaner Production, 2017, 158: 233-244. |
30 | Petrescu L, Cormos C C. Waste reduction algorithm applied for environmental impact assessment of coal gasification with carbon capture and storage[J]. Journal of Cleaner Production, 2015, 104: 220-235. |
31 | 范峻铭. 化石燃料化学链燃烧能量系统评价方法与全生命周期研究[D]. 北京: 中国科学院大学, 2019. |
Fan J M. Assessment method and study of life-cycle assessment of fossil fuel driven chemical looping combustion energy system[D]. Beijing: University of Chinese Academy of Sciences, 2019. | |
32 | Cheng Z, Qin L, Fan J A, et al. New insight into the development of oxygen carrier materials for chemical looping systems[J]. Engineering, 2018, 4(3): 343-351. |
33 | Protasova L, Snijkers F. Recent developments in oxygen carrier materials for hydrogen production via chemical looping processes[J]. Fuel, 2016, 181: 75-93. |
34 | Luo S W, Zeng L, Fan L S. Chemical looping technology: oxygen carrier characteristics[J]. Annual Review of Chemical and Biomolecular Engineering, 2015, 6: 53-75. |
35 | Matzen M, Pinkerton J, Wang X M, et al. Use of natural ores as oxygen carriers in chemical looping combustion: a review[J]. International Journal of Greenhouse Gas Control, 2017, 65: 1-14. |
36 | Dean C C, Blamey J, Florin N H, et al. The calcium looping cycle for CO2 capture from power generation, cement manufacture and hydrogen production[J]. Chemical Engineering Research and Design, 2011, 89(6): 836-855. |
37 | Bahzad H, Katayama K, Boot-Handford M E, et al. Iron-based chemical-looping technology for decarbonising iron and steel production[J]. International Journal of Greenhouse Gas Control, 2019, 91: 102766. |
38 | 宋国良. 循环流化床单床与双床煤气化特性分析[C]// 中国工程热物理学会2008年燃烧学学术会议论文集. 西安: 中国工程热物理学会, 2008. |
Song G L. Analysis of coal gasification characteristics in the single and dual fluidized beds [C]//Proceedings of the 2008 Chinese Society of Engineering Thermophysics Combustion academic Conference. Xi'an: CSET, 2008. | |
39 | Zhu X, Imtiaz Q, Donat F, et al. Chemical looping beyond combustion—a perspective[J]. Energy & Environmental Science, 2020, 13(3): 772-804. |
40 | Lyngfelt A, Leckner B, Mattisson T. A fluidized-bed combustion process with inherent CO2 separation; application of chemical-looping combustion[J]. Chemical Engineering Science, 2001, 56(10): 3101-3113. |
41 | Nandy A, Loha C, Gu S, et al. Present status and overview of chemical looping combustion technology[J]. Renewable and Sustainable Energy Reviews, 2016, 59: 597-619. |
42 | Lyngfelt A, Brink A, Langørgen Ø, et al. 11, 000 h of chemical-looping combustion operation—where are we and where do we want to go?[J]. International Journal of Greenhouse Gas Control, 2019, 88: 38-56. |
43 | Li D Y, Xu R D, Gu Z H, et al. Chemical-looping conversion of methane: a review[J]. Energy Technology, 2020, 8(8): 1900925. |
44 | Zheng M, Shen L H, Feng X Q. In situ gasification chemical looping combustion of a coal using the binary oxygen carrier natural anhydrite ore and natural iron ore[J]. Energy Conversion and Management, 2014, 83: 270-283. |
45 | Adánez J, Abad A, Mendiara T, et al. Chemical looping combustion of solid fuels[J]. Progress in Energy and Combustion Science, 2018, 65: 6-66. |
46 | Imtiaz Q, Hosseini D, Müller C R. Review of oxygen carriers for chemical looping with oxygen uncoupling (CLOU): thermodynamics, material development, and synthesis[J]. Energy Technology, 2013, 1(11): 633-647. |
47 | 赵亚仙, 向文国, 陈时熠. 化学链高温空分制氧性能评价[J]. 东南大学学报(自然科学版), 2013, 43(4): 809-813. |
Zhao Y X, Xiang W G, Chen S Y. Performance evaluation of chemical looping air separation/oxygen production at high temperatures[J]. Journal of Southeast University (Natural Science Edition), 2013, 43(4): 809-813. | |
48 | 赵亚仙, 谢文霞, 张军, 等. 化学链高温空分制氧与热力发电系统集成性能评价[J]. 发电设备, 2018, 32(3): 158-162. |
Zhao Y X, Xie W X, Zhang J, et al. Performance evaluation of a power plant system integrated with chemical looping air separation[J]. Power Equipment, 2018, 32(3): 158-162. | |
49 | Huang Z, Zhang Y, Fu J J, et al. Chemical looping gasification of biomass char using iron ore as an oxygen carrier[J]. International Journal of Hydrogen Energy, 2016, 41(40): 17871-17883. |
50 | Osman M, Zaabout A, Cloete S, et al. Internally circulating fluidized-bed reactor for syngas production using chemical looping reforming[J]. Chemical Engineering Journal, 2019, 377: 120076. |
51 | Bhavsar S, Veser G. Chemical looping beyond combustion: production of synthesis gas via chemical looping partial oxidation of methane[J]. RSC Advances, 2014, 4(88): 47254-47267. |
52 | Voitic G, Hacker V. Recent advancements in chemical looping water splitting for the production of hydrogen[J]. RSC Advances, 2016, 6(100): 98267-98296. |
53 | Fan L, Li F X, Ramkumar S. Utilization of chemical looping strategy in coal gasification processes[J]. Particuology, 2008, 6(3): 131-142. |
54 | Abanades J C, Murillo R, Fernandez J R, et al. New CO2 capture process for hydrogen production combining Ca and Cu chemical loops[J]. Environmental Science & Technology, 2010, 44(17): 6901-6904. |
55 | Di Giuliano A, Gallucci K. Sorption enhanced steam methane reforming based on nickel and calcium looping: a review[J]. Chemical Engineering and Processing-Process Intensification, 2018, 130: 240-252. |
56 | Weimer T, Berger R, Hawthorne C, et al. Lime enhanced gasification of solid fuels: examination of a process for simultaneous hydrogen production and CO2 capture[J]. Fuel, 2008, 87(8/9): 1678-1686. |
57 | Connell D P, Lewandowski D A, Ramkumar S, et al. Process simulation and economic analysis of the calcium looping process (CLP) for hydrogen and electricity production from coal and natural gas[J]. Fuel, 2013, 105: 383-396. |
58 | Lin S Y, Suzuki Y, Hatano H, et al. Developing an innovative method, HyPr-RING, to produce hydrogen from hydrocarbons[J]. Energy Conversion and Management, 2002, 43(9/10/11/12): 1283-1290. |
59 | 葛蔚, 刘新华, 任瑛, 等. 从多尺度到介尺度: 复杂化工过程模拟的新挑战[J]. 化工学报, 2010, 61(7): 1613-1620. |
Ge W, Liu X H, Ren Y, et al. From multi-scale to meso-scale: new challenges for simulation of complex processes in chemical engineering[J]. CIESC Journal, 2010, 61(7): 1613-1620. | |
60 | 李静海, 胡英, 袁权. 探索介尺度科学: 从新角度审视老问题[J]. 中国科学: 化学, 2014, 44(3): 277-281. |
Li J H, Hu Y, Yuan Q. Mesoscience: exploring old problems from a new angle[J]. Scientia Sinica (Chimica), 2014, 44(3): 277-281. | |
61 | Bidwe A R, Hawthorne C, Yu X Z, et al. Cold model study of a dual fluidized bed system for the gasification of solid fuels[J]. Fuel, 2014, 127: 151-160. |
62 | Song T, Shen L H. Review of reactor for chemical looping combustion of solid fuels[J]. International Journal of Greenhouse Gas Control, 2018, 76: 92-110. |
63 | Xu D K, Zhang Y T, Hsieh T L, et al. A novel chemical looping partial oxidation process for thermochemical conversion of biomass to syngas[J]. Applied Energy, 2018, 222: 119-131. |
64 | Schmitz M, Linderholm C J. Performance of calcium manganate as oxygen carrier in chemical looping combustion of biochar in a 10 kW pilot[J]. Applied Energy, 2016, 169: 729-737. |
65 | Markström P, Linderholm C, Lyngfelt A. Chemical-looping combustion of solid fuels — design and operation of a 100 kW unit with bituminous coal[J]. International Journal of Greenhouse Gas Control, 2013, 15: 150-162. |
66 | Berdugo V T, Lind F, Rydén M, et al. Experience of more than 1000 h of operation with oxygen carriers and solid biomass at large scale[J]. Applied Energy, 2017, 190: 1174-1183. |
67 | Acharya B, Dutta A, Basu P. Circulating-fluidized-bed-based calcium-looping gasifier: experimental studies on the calcination-carbonation cycle[J]. Industrial & Engineering Chemistry Research, 2012, 51(25): 8652-8660. |
68 | Udomsirichakorn J, Basu P, Abdul Salam P, et al. CaO-based chemical looping gasification of biomass for hydrogen-enriched gas production with in situ CO2 capture and tar reduction[J]. Fuel Processing Technology, 2014, 127: 7-12. |
69 | Acharya B, Dutta A, Basu P. Chemical-looping gasification of biomass for hydrogen-enriched gas production with in-process carbon dioxide capture[J]. Energy & Fuels, 2009, 23(10): 5077-5083. |
70 | Lu D Y, Hughes R W, Anthony E J. Ca-based sorbent looping combustion for CO2 capture in pilot-scale dual fluidized beds[J]. Fuel Processing Technology, 2008, 89(12): 1386-1395. |
71 | Donat F, Hu W, Scott S A, et al. On the distribution of residence times of solids in a circulating fluidised bed reactor for chemical looping combustion[C]// Proceedings of the 4th International Conference on Chemical Looping. Nanjing, 2016. |
72 | Baek J, Kim U, Jo H, et al. Chemical looping combustion development in korea development of ambient pressure CLC technology[C]// Proceedings of the 4th International Conference on Chemical Looping. Nanjing, 2016. |
73 | Seo M W, Nguyen T D B, Lim Y I, et al. Solid circulation and loop-seal characteristics of a dual circulating fluidized bed: experiments and CFD simulation[J]. Chemical Engineering Journal, 2011, 168(2): 803-811. |
74 | Rifflart S, Hoteit A, Yazdanpanah M M, et al. Construction and operation of a 10 kW CLC unit with circulation configuration enabling independent solid flow control[J]. Energy Procedia, 2011, 4: 333-340. |
75 | Medrano J A, Spallina V, Battistella A. Development of a 2 kW·h chemical-looping reforming reactor with integrated selective metallic-supported Pd membranes for highly efficient in-situ pure H2 production and CO2 capture[C]//Proceedings of the 4th International Conference on Chemical Looping. Nanjing, 2016. |
76 | Lin S Y, Saito T, Hashimoto K. Development of the three-tower chemical looping coal combustion technology[J]. Energy Procedia, 2017, 114: 414-418. |
77 | Lim S, Yamaguchi D, Tang L, et al. Evaluation of chemical looping combustion behavior using Victorian brown coal with ilmenite[C]// Proceedings of the 5th International Conference on Chemical Looping. Utah, 2018: 24-27. |
78 | Rajendran S, Wong M, Stokie D, et al. Performance of a Victorian brown coal and iron ore during chemical looping combustion in a 10 kWth alternating fluidized bed[J]. Fuel, 2016, 183: 245-252. |
79 | Pikkarainen T, Hiltunen I, Teir S. Piloting of bio-CLC for BECCS[C]// Proceedings of the 4th International Conference on Chemical Looping. Nanjing, 2016. |
80 | Langørgen Ø, Saanum I, Haugen N E L. Performance of a 150 kW chemical looping combustion reactor system for gaseous fuels using a copper-based oxygen carrier[C]//Proceedings of the 4th International Conference on Chemical Looping. Nanjing,2016. |
81 | Abad A, Adánez-Rubio I, Gayán P, et al. Demonstration of chemical-looping with oxygen uncoupling (CLOU) process in a 1.5 kWth continuously operating unit using a Cu-based oxygen-carrier[J]. International Journal of Greenhouse Gas Control, 2012, 6: 189-200. |
82 | Abanades J C, Alonso M, Rodríguez N, et al. Capturing CO2 from combustion flue gases with a carbonation calcination loop. Experimental results and process development[J]. Energy Procedia, 2009, 1(1): 1147-1154. |
83 | Abad A, Pérez-Vega R, de Diego L F, et al. Design and operation of a 50 kWth chemical looping combustion (CLC) unit for solid fuels[J]. Applied Energy, 2015, 157: 295-303. |
84 | Alonso M, Diego M E, Pérez C, et al. Biomass combustion with in situ CO2 capture by CaO in a 300 kWth circulating fluidized bed facility[J]. International Journal of Greenhouse Gas Control, 2014, 29: 142-152. |
85 | Diego M E, Alonso M. Operational feasibility of biomass combustion with in situ CO2 capture by CaO during 360 h in a 300 kWth calcium looping facility[J]. Fuel, 2016, 181: 325-329. |
86 | Diego M E, Arias B, Méndez A, et al. Experimental testing of a sorbent reactivation process in La Pereda 1.7 MWth calcium looping pilot plant[J]. International Journal of Greenhouse Gas Control, 2016, 50: 14-22. |
87 | Wang W, Ramkumar S, Li S G, et al. Subpilot demonstration of the carbonation-calcination reaction (CCR) process: high-temperature CO2 and sulfur capture from coal-fired power plants[J]. Industrial & Engineering Chemistry Research, 2010, 49(11): 5094-5101. |
88 | Whitty K J, Lighty J S, Fry A. Development and scale-up of copper-based chemical looping with oxygen uncoupling[C]//Proceedings of the 4th International Conference on Chemical Looping. Nanjing, 2016. |
89 | Siriwardane R, Riley J, Bayham S, et al. 50-kWth methane/air chemical looping combustion tests with commercially prepared CuO-Fe2O3-alumina oxygen carrier with two different techniques[J]. Applied Energy, 2018, 213: 92-99. |
90 | Andrus H E, Chiu J H, Edberg C D, et al. Alstom's chemical looping combustion prototype for CO2 capture from existing pulverized coal-fired power plants[R]. Office of Scientific and Technical Information (OSTI), 2012. |
91 | Soukup G, Pfeifer C, Kreuzeder A, et al. In situ CO2 capture in a dual fluidized bed biomass steam gasifier-bed material and fuel variation[J]. Chemical Engineering & Technology, 2009, 32(3): 348-354. |
92 | Aghaalikhani A, Schmid J C, Borello D, et al. Detailed modelling of biomass steam gasification in a dual fluidized bed gasifier with temperature variation[J]. Renewable Energy, 2019, 143: 703-718. |
93 | Fuchs J, Müller S, Schmid J C, et al. A kinetic model of carbonation and calcination of limestone for sorption enhanced reforming of biomass[J]. International Journal of Greenhouse Gas Control, 2019, 90: 102787. |
94 | Koppatz S, Pfeifer C, Rauch R, et al. H2 rich product gas by steam gasification of biomass with in situ CO2 absorption in a dual fluidized bed system of 8 MW fuel input[J]. Fuel Processing Technology, 2009, 90(7/8): 914-921. |
95 | Kraft S, Kuba M, Hofbauer H. The behavior of biomass and char particles in a dual fluidized bed gasification system[J]. Powder Technology, 2018, 338: 887-897. |
96 | Stollhof M, Penthor S, Mayer K, et al. Influence of the loop seal fluidization on the operation of a fluidized bed reactor system[J]. Powder Technology, 2019, 352: 422-435. |
97 | Ströhle J, Orth M, Epple B. Chemical looping combustion of hard coal in a 1 MWth pilot plant using ilmenite as oxygen carrier[J]. Applied Energy, 2015, 157: 288-294. |
98 | Thon A, Kramp M, Hartge E U, et al. Operational experience with a system of coupled fluidized beds for chemical looping combustion of solid fuels using ilmenite as oxygen carrier[J]. Applied Energy, 2014, 118: 309-317. |
99 | Armbrust N, Duelli (Varela) G, Dieter H, et al. Calcium looping cycle for hydrogen production from biomass gasification syngas: experimental investigation at a 20 kWth dual fluidized-bed facility[J]. Industrial & Engineering Chemistry Research, 2015, 54(21): 5624-5634. |
100 | Hawthorne C, Poboss N, Dieter H, et al. Operation and results of a 200-kWth dual fluidized bed pilot plant gasifier with adsorption-enhanced reforming[J]. Biomass Conversion and Biorefinery, 2012, 2(3): 217-227. |
101 | Zeng J M, Xiao R, Zeng D W, et al. High H2/CO ratio syngas production from chemical looping gasification of sawdust in a dual fluidized bed gasifier[J]. Energy & Fuels, 2016, 30(3): 1764-1770. |
102 | Shen L H, Wu J H, Gao Z P, et al. Characterization of chemical looping combustion of coal in a 1 kWth reactor with a nickel-based oxygen carrier[J]. Combustion and Flame, 2010, 157(5): 934-942. |
103 | Shen L H, Wu J H, Xiao J. Experiments on chemical looping combustion of coal with a NiO based oxygen carrier[J]. Combustion and Flame, 2009, 156(3): 721-728. |
104 | Gu H M, Shen L H, Zhang S W, et al. Enhanced fuel conversion by staging oxidization in a continuous chemical looping reactor based on iron ore oxygen carrier[J]. Chemical Engineering Journal, 2018, 334: 829-836. |
105 | Yan J C, Shen L H, Jiang S X, et al. Combustion performance of sewage sludge in a novel CLC system with a two-stage fuel reactor[J]. Energy & Fuels, 2017, 31(11): 12570-12581. |
106 | Ge H J, Shen L H, Feng F, et al. Experiments on biomass gasification using chemical looping with nickel-based oxygen carrier in a 25 kWth reactor[J]. Applied Thermal Engineering, 2015, 85: 52-60. |
107 | Xiao R, Chen L Y, Saha C, et al. Pressurized chemical-looping combustion of coal using an iron ore as oxygen carrier in a pilot-scale unit[J]. International Journal of Greenhouse Gas Control, 2012, 10: 363-373. |
108 | Wang X D, Wang X J, Kong Z W, et al. Auto-thermal operation and optimization of coal-fueled separated gasification chemical looping combustion in a pilot-scale unit[J]. Chemical Engineering Journal, 2020, 383: 123159. |
109 | Shao Y L, Agarwal R K, Wang X D, et al. Numerical simulation of a 3D full loop iG-CLC system including a two-stage counter-flow moving bed air reactor[J]. Chemical Engineering Science, 2020, 217: 115502. |
110 | Liu Y J, Chen S Y, Zhu M, et al. Investigation of a dual cold-flow fluidized bed for calcium looping gasification process[J]. Powder Technology, 2019, 353: 10-19. |
111 | Ma J C, Zhao H B, Tian X, et al. Chemical looping combustion of coal in a 5 kWth interconnected fluidized bed reactor using hematite as oxygen carrier[J]. Applied Energy, 2015, 157: 304-313. |
112 | Ma J, Zhao H, Niu P, et al. Design and operation of a 50 kWth chemical looping combustion (CLC) reactor using coal as fuel[C]// Proceedings of the 4th International Conference on Chemical Looping. Nanjing, 2016. |
113 | Wei G Q, He F, Huang Z, et al. Continuous operation of a 10 kWth chemical looping integrated fluidized bed reactor for gasifying biomass using an iron-based oxygen carrier[J]. Energy & Fuels, 2015, 29(1): 233-241. |
114 | Cheng M, Li Y, Li Z S, et al. An integrated fuel reactor coupled with an annular carbon stripper for coal-fired chemical looping combustion[J]. Powder Technology, 2017, 320: 519-529. |
115 | Wang S Z, Wang G X, Jiang F, et al. Chemical looping combustion of coke oven gas by using Fe2O3/CuO with MgAl2O4 as oxygen carrier[J]. Energy & Environmental Science, 2010, 3(9): 1353. |
116 | Feng Y, Wang Q, Fan H, et al. Experiment on chemical looping gasification on dual circulating fluidized bed system with biomass and lignite[C]// Proceedings of the 5th International Conference on Chemical Looping. Utah,2018. |
117 | Chang M H, Huang C M, Liu W H, et al. Design and experimental investigation of calcium looping process for 3-kWth and 1.9-MWth facilities[J]. Chemical Engineering & Technology, 2013, 36(9): 1525-1532. |
118 | Chang M H, Chen W C, Huang C M, et al. Design and experimental testing of a 1.9 MWth calcium looping pilot plant[J]. Energy Procedia, 2014, 63: 2100-2108. |
119 | Wang D, Chen S Y, Xu C C, et al. Energy and exergy analysis of a new hydrogen-fueled power plant based on calcium looping process[J]. International Journal of Hydrogen Energy, 2013, 38(13): 5389-5400. |
120 | Chen S Y, Wang D, Xue Z P, et al. Calcium looping gasification for high-concentration hydrogen production with CO2 capture in a novel compact fluidized bed: simulation and operation requirements[J]. International Journal of Hydrogen Energy, 2011, 36(8): 4887-4899. |
121 | Xue Z P, Chen S Y, Wang D, et al. Design and fluid dynamic analysis of a three-fluidized-bed reactor system for chemical-looping hydrogen generation[J]. Industrial & Engineering Chemistry Research, 2012, 51(11): 4267-4278. |
122 | Harris A T, Davidson J F, Thorpe R B. The influence of the riser exit on the particle residence time distribution in a circulating fluidised bed riser[J]. Chemical Engineering Science, 2003, 58(16): 3669-3680. |
123 | van der Meer E H, Thorpe R B, Davidson J F. Flow patterns in the square cross-section riser of a circulating fluidised bed and the effect of riser exit design[J]. Chemical Engineering Science, 2000, 55(19): 4079-4099. |
124 | Wang S D, Yang S J, Zhao K, et al. Influence of exit configuration on the hydrodynamic behaviors of a high-density circulating fluidized bed riser[C]//2011 Asia-Pacific Power and Energy Engineering Conference. Wuhan, China: IEEE, 2011: 1-5. |
125 | 李佳瑶. 高密度循环流化床内气固两相流动的模拟研究[D]. 北京: 中国石油大学(北京), 2016. |
Li J Y. Numerical simulation of gas-solid two-phase flow in high density circulating fluidized bed[D]. Beijing: ChinaUniversity of Petroleum, 2016. | |
126 | Rydén M, Arjmand M. Continuous hydrogen production via the steam-iron reaction by chemical looping in a circulating fluidized-bed reactor[J]. International Journal of Hydrogen Energy, 2012, 37(6): 4843-4854. |
127 | Siriwardane R V, Fan Y Y. Tri-metallic ferrite oxygen carriers for chemical looping combustion: US9797594[P]. 2017-10-24. |
128 | Lyngfelt A, Linderholm C. Chemical-looping combustion of solid fuels — status and recent progress[J]. Energy Procedia, 2017, 114: 371-386. |
129 | Kramp M, Thon A, Hartge E U, et al. Carbon stripping — a critical process step in chemical looping combustion of solid fuels[J]. Chemical Engineering & Technology, 2012, 35(3): 497-507. |
130 | Rowe P N, Nienow A W. Particle mixing and segregation in gas fluidised beds: a review[J]. Powder Technology, 1976, 15(2): 141-147. |
131 | Wirsum M, Fett F, Iwanowa N, et al. Particle mixing in bubbling fluidized beds of binary particle systems[J]. Powder Technology, 2001, 120(1/2): 63-69. |
132 | Yang X, Ma Z R, Liang Z W, et al. Hydrodynamic characteristics in a cold model of the dual fluidized bed with mixed particles[J]. Powder Technology, 2019, 351: 291-304. |
133 | Sun H M, Cheng M, Chen D G, et al. Experimental study of a carbon stripper in solid fuel chemical looping combustion[J]. Industrial & Engineering Chemistry Research, 2015, 54(35): 8743-8753. |
134 | Liu Y J, Sun Z, Toan S, et al. Investigations on fluid dynamics of binary particles in a dual fluidized bed reactor system for enhanced calcium looping gasification process[J]. Powder Technology, 2020, 361: 803-811. |
135 | Cheng M, Sun H M, Li Z S, et al. Annular carbon stripper for chemical-looping combustion of coal[J]. Industrial & Engineering Chemistry Research, 2017, 56(6): 1580-1593. |
136 | Chen X, Ma J C, Tian X, et al. Numerical investigation on the improvement of carbon conversion in a dual circulating fluidized bed reactor for chemical looping combustion of coal[J]. Energy & Fuels, 2019, 33(12): 12801-12813. |
137 | Chen X, Ma J C, Tian X, et al. CPFD simulation and optimization of a 50 kWth dual circulating fluidized bed reactor for chemical looping combustion of coal[J]. International Journal of Greenhouse Gas Control, 2019, 90: 102800. |
138 | Chung C, Qin L, Shah V, et al. Chemically and physically robust, commercially-viable iron-based composite oxygen carriers sustainable over 3000 redox cycles at high temperatures for chemical looping applications[J]. Energy & Environmental Science, 2017, 10(11): 2318-2323. |
139 | Shah K, Moghtaderi B, Wall T. Selection of suitable oxygen carriers for chemical looping air separation: a thermodynamic approach[J]. Energy & Fuels, 2012, 26(4): 2038-2045. |
140 | Lyngfelt A. Chemical looping combustion: status and development challenges[J]. Energy & Fuels, 2020, 34(8): 9077-9093. |
[1] | 郑玉圆, 葛志伟, 韩翔宇, 王亮, 陈海生. 中高温钙基材料热化学储热的研究进展与展望[J]. 化工学报, 2023, 74(8): 3171-3192. |
[2] | 杨峥豪, 何臻, 常玉龙, 靳紫恒, 江霞. 生物质快速热解下行式流化床反应器研究进展[J]. 化工学报, 2023, 74(6): 2249-2263. |
[3] | 周小文, 杜杰, 张战国, 许光文. 基于甲烷脉冲法的Fe2O3-Al2O3载氧体还原特性研究[J]. 化工学报, 2023, 74(6): 2611-2623. |
[4] | 张兰河, 赖青燚, 王铁铮, 关潇卓, 张明爽, 程欣, 徐小惠, 贾艳萍. H2O2对SBR脱氮效率和污泥性能的影响[J]. 化工学报, 2023, 74(5): 2186-2196. |
[5] | 张建华, 陈萌萌, 孙雅雯, 彭永臻. 部分短程硝化同步除磷耦合Anammox实现生活污水高效脱氮除磷[J]. 化工学报, 2023, 74(5): 2147-2156. |
[6] | 王泽栋, 石至平, 刘丽艳. 考虑气泡非均匀耗散的矩形反应器声流场数值模拟及结构优化[J]. 化工学报, 2023, 74(5): 1965-1973. |
[7] | 杨星宇, 马优, 朱春英, 付涛涛, 马友光. 梳状并行微通道内液液分布规律研究[J]. 化工学报, 2023, 74(2): 698-706. |
[8] | 章承浩, 罗京, 张吉松. 微反应器内基于氮氧自由基催化剂连续氧气/空气氧化反应的研究进展[J]. 化工学报, 2023, 74(2): 511-524. |
[9] | 张梦波, 楼琳瑾, 冯艺荣, 郑雨婷, 张浩淼, 王靖岱, 阳永荣. 烷基铝氧烷合成技术研究进展[J]. 化工学报, 2023, 74(2): 525-534. |
[10] | 谢煜, 张民, 胡卫国, 王玉军, 骆广生. 利用膜分散微反应器高效溶解D-7-ACA的研究[J]. 化工学报, 2023, 74(2): 748-755. |
[11] | 付家崴, 陈帅帅, 方凯伦, 蒋新. 微反应器共沉淀反应制备铜锰催化剂[J]. 化工学报, 2023, 74(2): 776-783. |
[12] | 孙嘉辰, 裴春雷, 陈赛, 赵志坚, 何盛宝, 巩金龙. 化学链低碳烷烃氧化脱氢技术进展[J]. 化工学报, 2023, 74(1): 205-223. |
[13] | 刘坤, 尹远, 耿文强, 夏昊天. 不同操作参数下介质阻挡放电的固氮性能研究及机理分析[J]. 化工学报, 2022, 73(9): 4045-4053. |
[14] | 袁妮妮, 郭拓, 白红存, 何育荣, 袁永宁, 马晶晶, 郭庆杰. 化学链燃烧过程Fe2O3/Al2O3载氧体表面CH4反应:ReaxFF-MD模拟[J]. 化工学报, 2022, 73(9): 4054-4061. |
[15] | 张经纬, 周弋惟, 陈卓, 徐建鸿. 微反应器内的有机合成前沿进展[J]. 化工学报, 2022, 73(8): 3472-3482. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 554
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1010
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||