化工学报 ›› 2021, Vol. 72 ›› Issue (5): 2783-2791.DOI: 10.11949/0438-1157.20201357
黄文媛(),孙士杰,唐宏震,苏智芳,钟秦迪,刘幽燕,李青云(
)
收稿日期:
2020-09-25
修回日期:
2020-12-02
出版日期:
2021-05-05
发布日期:
2021-05-05
通讯作者:
李青云
作者简介:
黄文媛(1995—),女,硕士研究生,基金资助:
HUANG Wenyuan(),SUN Shijie,TANG Hongzhen,SU Zhifang,ZHONG Qindi,LIU Youyan,LI Qingyun(
)
Received:
2020-09-25
Revised:
2020-12-02
Online:
2021-05-05
Published:
2021-05-05
Contact:
LI Qingyun
摘要:
载体材料是构建固定化体系的基础,其中孔结构直接影响固定化的生物量及降解结果,开展了制备不同孔径聚氨酯泡沫材料并考察其固定化产碱杆菌DN25降解苯酚的研究。结果表明,孔隙结构的聚氨酯泡沫材料在孔径均值为150 μm时所固定的生物量达到最大值(0.0253±0.0010) g,固定化细胞能在48 h内完全降解1160 mg·L-1苯酚,而游离细胞则完全受到抑制,并且发现载体材料PUF在降解前12 h内吸附苯酚的平衡吸附率为56.1%。进一步研究固定化细胞在初始pH6.0~9.0,NaCl浓度0~4.0%条件下降解900 mg·L-1苯酚的情况,固定化细胞对苯酚的去除率受pH、NaCl浓度的影响不显著。并且,固定化细胞重复使用11个批次对500 mg·L-1苯酚的去除率仍能保持100%,反映了PUF-固定化细胞体系对苯酚处理浓度和系统稳定性两方面的强化作用。
中图分类号:
黄文媛, 孙士杰, 唐宏震, 苏智芳, 钟秦迪, 刘幽燕, 李青云. 聚氨酯泡沫固定化Alcaligenes sp.DN25去除苯酚的研究[J]. 化工学报, 2021, 72(5): 2783-2791.
HUANG Wenyuan, SUN Shijie, TANG Hongzhen, SU Zhifang, ZHONG Qindi, LIU Youyan, LI Qingyun. Phenol removal by the Alcaligenes sp. DN25 immobilized on the polyurethane foams[J]. CIESC Journal, 2021, 72(5): 2783-2791.
1 | Munoz J D, Oosterkamp M J, Wang W, et al. Impact of long-term salinity exposure in anaerobic membrane bioreactors treating phenolic wastewater: performance robustness and endured microbial community[J]. Water Research, 2018, 141: 172-184. |
2 | Chris F S, Aswin K N, Thilagam R, et al. Efficacy of free and encapsulated Bacillus lichenformis strain SL10 on degradation of phenol: a comparative study of degradation kinetics [J]. Journal of Environmental Management, 2017, 197(15): 373-383. |
3 | Basak B, Jeon B H, Kurade M B, et al. Biodegradation of high concentration phenol using sugarcane bagasse immobilized Candida tropicalis PHB5 in a packed-bed column reactor [J]. Ecotoxicol. Environ. Saf., 2019, 180: 317-325. |
4 | Massalha N, Brenner A, Sheindorf C, et al. Enriching composite hydrophilic polyurethane foams with PAC to enhance adsorption of phenol from aqueous solutions [J]. Chemical Engineering Journal, 2015, 280: 283-292. |
5 | Kamali M, Gameiro T, Costa M E, et al. Enhanced biodegradation of phenolic wastewaters with acclimatized activated sludge - a kinetic study [J]. Chemical Engineering Journal, 2019, 378: 122186. |
6 | Zhao G, Zhou L, Li Y, et al. Enhancement of phenol degradation using immobilized microorganisms and organic modified montmorillonite in a two-phase partitioning bioreactor [J]. Journal of Hazardous Materials, 2009, 169(1/2/3): 402-410. |
7 | Li Q Y, Lu H, Yin Y, et al. Synergic effect of adsorption and biodegradation enhance cyanide removal by immobilized Alcaligenes sp. strain DN25 [J]. Journal of Hazardous Materials, 2019, 364: 367-375. |
8 | Cai Y, Yang S, Chen D, et al. A novel strategy to immobilize bacteria on polymer particles for efficient adsorption and biodegradation of soluble organics [J]. Nanoscale, 2017, 9(32): 11530-11536. |
9 | Ahmad M, Liu S, Mahmood N, et al. Synergic adsorption-biodegradation by an advanced carrier for enhanced removal of high-strength nitrogen and refractory organics [J]. ACS Appl. Mater. Interfaces., 2017, 9(15): 13188-13200. |
10 | Partovinia A, Rasekh B. Review of the immobilized microbial cell systems for bioremediation of petroleum hydrocarbons polluted environments [J]. Critical Reviews in Environmental Science and Technology, 2018, 48(1): 1-38. |
11 | Zhang W, Ren X, He J, et al. Application of natural mixed bacteria immobilized carriers to different kinds of organic wastewater treatment and microbial community comparison [J]. Journal of Hazardous Materials, 2019, 377: 113-123. |
12 | 李青云, 周茂钟, 刘幽燕, 等.固定化铜绿假单胞菌GF31对氯氰菊酯降解的强化作用[J].化工学报, 2013, 64(6): 2219-2226. |
Li Q Y, Zhou M Z, Liu Y Y, et al. Bioaugmentation strategy to enhance cypermethrin degradation by immobilized Pseudomonas aeruginosa GF31[J]. CIESC Journal, 2013, 64(6): 2219-2226. | |
13 | Massalha N, Brenner A, Sheindorf C, et al. Application of immobilized and granular dried anaerobic biomass for stabilizing and increasing anaerobic bio-systems tolerance for high organic loads and phenol shocks [J]. Bioresour. Technol., 2015, 197: 106-112. |
14 | Namane A, Amrouche F, Arrar J, et al. Bacterial behaviour in the biodegradation of phenol by indigenous bacteria immobilized in Ca-alginate beads [J]. Environ. Technol., 2020, 41(14): 1829-1836. |
15 | 周珊, 胡泽友, 喻景权.竹炭固定化假单胞菌处理含酚废水的研究[J].高校化学工程学报, 2008, 22(5): 889-894. |
Zhou S, Hu Z Y, Yu J Q. Biodegradation of phenol wastewater by Pseudomonas sp. immobilized on bamboo-carbon[J]. Journal of Chemical Engineering of Chinese Universities, 2008, 22(5): 889-894. | |
16 | Zhou L C, Li Y F, Bai X, et al. Use of microorganisms immobilized on composite polyurethane foam to remove Cu(Ⅱ) from aqueous solution [J]. Journal of Hazardous Materials, 2009, 167(1/2/3): 1106-1113. |
17 | Ueno R, Shun W D, Urano N. Synergetic effects of cell immobilization in polyurethane foam and use of thermotolerant strain on degradation of mixed hydrocarbon substrate by Prototheca zopfii[J]. Fisheries Science, 2006, 72(5): 1027-1033. |
18 | Zhao L, Xiao D, Liu Y, et al. Biochar as simultaneous shelter, adsorbent, pH buffer, and substrate of Pseudomonas citronellolis to promote biodegradation of high concentrations of phenol in wastewater [J]. Water Research, 2020, 172: 115494. |
19 | Xiong B, Zhang Y, Hou Y, et al. Enhanced biodegradation of PAHs in historically contaminated soil by M. gilvum inoculated biochar [J]. Chemosphere, 2017, 182: 316-324. |
20 | Oh J H, Bae J H, Kim J H, et al. Effects of Kevlar pulp on the enhancement of cryogenic mechanical properties of polyurethane foam [J]. Polymer Testing, 2019, 80: 106093. |
21 | Tsai S C, Tsai L D, Li Y K. An isolated Candida albicans TL3 capable of degrading phenol at large concentration [J]. Bioscience, Biotechnology, and Biochemistry, 2005, 69(12): 2358-2367. |
22 | Arutchelvan V, Kanakasabai V, Elangovan R, et al. Kinetics of high strength phenol degradation using Bacillus brevis [J]. Journal of Hazardous Materials, 2006, 129(1/2/3): 216-222. |
23 | Bera S, Roy A S, Mohanty K. Biodegradation of phenol by a native mixed bacterial culture isolated from crude oil contaminated site [J]. International Biodeterioration & Biodegradation, 2017, 121: 107-113. |
24 | Essam T, Amin M A, Tayeb O E, et al. Kinetics and metabolic versatility of highly tolerant phenol degrading Alcaligenes strain TW1 [J]. Journal of Hazardous Materials, 2010, 173(1/2/3): 783-788. |
25 | Su X, Zhou M, Hu P, et al. Whole-genome sequencing of an acidophilic Rhodotorula sp. ZM1 and its phenol-degrading capability under acidic conditions [J]. Chemosphere, 2019, 232: 76-86. |
26 | Jiang Y, Deng T, Shang Y, et al. Biodegradation of phenol by entrapped cell of Debaryomyces sp. with nano-Fe3O4 under hypersaline conditions [J]. International Biodeterioration & Biodegradation, 2017, 123: 37-45. |
27 | Wang Y, Chen H, Liu Y X, et al. An adsorption-release-biodegradation system for simultaneous biodegradation of phenol and ammonium in phenol-rich wastewater [J]. Bioresource Technology, 2016, 211: 711-719. |
28 | Stenholm Å, Hedeland M, Arvidsson T, et al. Removal of nonylphenol polyethoxylates by adsorption on polyurethane foam and biodegradation using immobilized Trametes versicolor [J]. Science of the Total Environment, 2020, 724: 138159. |
29 | Ma X, Li N, Jiang J, et al. Adsorption–synergic biodegradation of high-concentrated phenolic water by Pseudomonas putida immobilized on activated carbon fiber [J]. Journal of Environmental Chemical Engineering, 2013, 1(3): 466-472. |
30 | Gomes E, Silvan C, Macedo A C, et al. Phenol biodegradation by Candida tropicalis ATCC 750 immobilized on cashew apple bagasse [J]. Journal of Environmental Chemical Engineering, 2019, 7(3): 103076. |
31 | Tian H, Xu X, Qu J, et al. Biodegradation of phenolic compounds in high saline wastewater by biofilms adhering on aerated membranes [J]. Journal of Hazardous Materials, 2020, 392: 122463. |
32 | Li H, Meng F, Duan W, et al. Biodegradation of phenol in saline or hypersaline environments by bacteria: a review [J]. Ecotoxicol. Environ. Saf., 2019, 184: 109658. |
33 | 司伟磊, 吕红, 周集体, 等.聚氨酯泡沫固定化蒽醌强化偶氮染料生物脱色的研究[J].高校化学工程学报, 2010, 24(3): 498-502. |
Si W L, Lyu H, Zhou J T, et al. Enhanced biodecolorization of azo dyes by using anthraquinone immobilized in polyurethane foam[J]. Journal of Chemical Engineering of Chinese Universities, 2010, 24(3): 498-502. |
[1] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[2] | 孟令玎, 崇汝青, 孙菲雪, 孟子晖, 刘文芳. 改性聚乙烯膜和氧化硅固定化碳酸酐酶[J]. 化工学报, 2023, 74(8): 3472-3484. |
[3] | 陈吉, 洪泽, 雷昭, 凌强, 赵志刚, 彭陈辉, 崔平. 基于分子动力学的焦炭溶损反应及其机理研究[J]. 化工学报, 2023, 74(7): 2935-2946. |
[4] | 陈雅鑫, 袁航, 刘冠章, 毛磊, 杨纯, 张瑞芳, 张光亚. 蛋白质纳米笼介导的酶自固定化研究进展[J]. 化工学报, 2023, 74(7): 2773-2782. |
[5] | 邢美波, 张中天, 景栋梁, 张洪发. 磁调控水基碳纳米管协同多孔材料强化相变储/释能特性[J]. 化工学报, 2023, 74(7): 3093-3102. |
[6] | 李瑞康, 何盈盈, 卢维鹏, 王园园, 丁皓东, 骆勇名. 电化学强化钴基阴极活化过一硫酸盐的研究[J]. 化工学报, 2023, 74(5): 2207-2216. |
[7] | 肖川宝, 李林洋, 刘武锋, 钟年丙, 解泉华, 钟登杰, 常海星. 光催化与离子交换吸附耦合有效去除2,4,6-三氯苯酚[J]. 化工学报, 2023, 74(4): 1587-1597. |
[8] | 吴学红, 栾林林, 陈亚南, 赵敏, 吕财, 刘勇. 可降解柔性相变薄膜的制备及其热性能[J]. 化工学报, 2023, 74(4): 1818-1826. |
[9] | 王帅, 杨富凯, 徐新宇. 阻燃型全生物基多元醇聚氨酯泡沫的制备及性能研究[J]. 化工学报, 2023, 74(3): 1399-1408. |
[10] | 孟金琳, 汪宇, 张群锋, 叶光华, 周兴贵. 介孔材料低温氮气吸脱附的孔道网络模型[J]. 化工学报, 2023, 74(2): 893-903. |
[11] | 谢煜, 张民, 胡卫国, 王玉军, 骆广生. 利用膜分散微反应器高效溶解D-7-ACA的研究[J]. 化工学报, 2023, 74(2): 748-755. |
[12] | 赵焕娟, 刘婧, 周冬雷, 林敏. 多孔材料对氢气爆轰的抑制作用[J]. 化工学报, 2023, 74(2): 968-976. |
[13] | 许贤伦, 钱旸, 张兴旺, 雷乐成. 高压脉冲介质阻挡放电降解土壤中芘的研究[J]. 化工学报, 2022, 73(9): 4025-4033. |
[14] | 贾海林, 崔博, 陈南, 杨永钦, 王庆银, 朱福敏. 低碳醇改性无氟泡沫的性能分析与扑灭油池火的实验研究[J]. 化工学报, 2022, 73(9): 4235-4244. |
[15] | 李彩风, 王晓, 李岗建, 林军章, 汪卫东, 束青林, 曹嫣镔, 肖盟. 嗜烃乳化菌SL-1与内源菌协同驱油的菌群作用关系研究[J]. 化工学报, 2022, 73(9): 4095-4102. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 170
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||||||||||||||||||