化工学报 ›› 2021, Vol. 72 ›› Issue (5): 2604-2615.DOI: 10.11949/0438-1157.20201738
张玉明1(),纪德馨1,2,朱翰文1,2,万利锋1,2,张炜1,温宏炎1,2,岳君容2()
收稿日期:
2020-12-03
修回日期:
2021-02-20
出版日期:
2021-05-05
发布日期:
2021-05-05
通讯作者:
张玉明,岳君容
作者简介:
张玉明(1985—),男,博士,副教授,基金资助:
ZHANG Yuming1(),JI Dexin1,2,ZHU Hanwen1,2,WAN Lifeng1,2,ZHANG Wei1,WEN Hongyan1,2,YUE Junrong2()
Received:
2020-12-03
Revised:
2021-02-20
Online:
2021-05-05
Published:
2021-05-05
Contact:
ZHANG Yuming,YUE Junrong
摘要:
气化是煤、生物质以及其他含碳燃料高值化利用的有效途径之一。为了考察气化过程中焦油的反应转化特性,选取萘作为焦油模型化合物,以流化催化裂化(fluid catalytic cracking,FCC)催化剂及褐煤热解焦作为接触裂解载体,利用微型流化床考察流化条件下萘催化裂解反应规律,并采用Friedman法和积分法计算萘裂解生成CH4和H2等典型气体组分的动力学参数。结果表明,FCC催化剂与褐煤焦均对萘裂解有明显的催化效果,褐煤焦用于萘裂解的反应活化能整体数值低于FCC催化剂。FCC催化剂裂解萘生成H2符合三维扩散(球形对称)模型,生成CH4符合成核与生长(n=2/3)模型。相应地,褐煤焦裂解萘反应生成H2和CH4分别采用收缩几何形状(圆柱形对称)和三维扩散(圆柱形对称)具有较好的拟合度。
中图分类号:
张玉明, 纪德馨, 朱翰文, 万利锋, 张炜, 温宏炎, 岳君容. 微型流化床中萘裂解生成小分子气体的反应动力学研究[J]. 化工学报, 2021, 72(5): 2604-2615.
ZHANG Yuming, JI Dexin, ZHU Hanwen, WAN Lifeng, ZHANG Wei, WEN Hongyan, YUE Junrong. Reaction kinetics of naphthalene cracking into small molecule gas in a micro fluidized bed[J]. CIESC Journal, 2021, 72(5): 2604-2615.
样品 | 工业分析/%(质量分数) | 元素分析/%(质量分数) | |||||||
---|---|---|---|---|---|---|---|---|---|
Vad | Mad | Aad | FCad* | Nd | Cd | Hd | Sd | Od* | |
LC | 4.12 | 2.92 | 25.59 | 67.37 | 0.94 | 69.32 | 1.49 | 0.80 | 1.09 |
表1 物料样品的工业分析和元素分析
Table 1 Proximate and ultimate analysis of sample
样品 | 工业分析/%(质量分数) | 元素分析/%(质量分数) | |||||||
---|---|---|---|---|---|---|---|---|---|
Vad | Mad | Aad | FCad* | Nd | Cd | Hd | Sd | Od* | |
LC | 4.12 | 2.92 | 25.59 | 67.37 | 0.94 | 69.32 | 1.49 | 0.80 | 1.09 |
LC ash/%(质量分数) | ||||||||
---|---|---|---|---|---|---|---|---|
TiO2 | MgO | Al2O3 | SiO2 | SO3 | K2O | CaO | Fe2O3 | Others |
1.19 | 3.94 | 8.56 | 12.63 | 31.65 | 0.54 | 34.46 | 6.52 | 0.51 |
FCC-C/%(质量分数) | ||||||||
V2O5 | P2O5 | Al2O3 | SiO2 | Na2O | K2O | NiO | Fe2O3 | Others |
1.09 | 1.38 | 47.87 | 47.34 | 0.36 | 0.20 | 0.52 | 0.51 | 0.73 |
表2 褐煤灰分和FCC催化剂的XRF分析
Table 2 XRF analysis of the LC ash and FCC catalyst
LC ash/%(质量分数) | ||||||||
---|---|---|---|---|---|---|---|---|
TiO2 | MgO | Al2O3 | SiO2 | SO3 | K2O | CaO | Fe2O3 | Others |
1.19 | 3.94 | 8.56 | 12.63 | 31.65 | 0.54 | 34.46 | 6.52 | 0.51 |
FCC-C/%(质量分数) | ||||||||
V2O5 | P2O5 | Al2O3 | SiO2 | Na2O | K2O | NiO | Fe2O3 | Others |
1.09 | 1.38 | 47.87 | 47.34 | 0.36 | 0.20 | 0.52 | 0.51 | 0.73 |
样品 | 比表面积/(m2/g) | 孔体积/(cm3/g) | 平均孔径Da/nm | ||||
---|---|---|---|---|---|---|---|
Atotal | Amicro | Ameso | Vtotal | Vmico | Vmeso | ||
LC | 214.0 | 175.5 | 38.5 | 0.5319 | 0.1043 | 0.4276 | 9.94 |
FCC-C | 106.8 | 64.6 | 42.2 | 0.5716 | 0.0432 | 0.5329 | 24.97 |
表3 褐煤半焦和FCC催化剂的孔结构分析
Table 3 Pore structure analysis of LC and FCC-C samples
样品 | 比表面积/(m2/g) | 孔体积/(cm3/g) | 平均孔径Da/nm | ||||
---|---|---|---|---|---|---|---|
Atotal | Amicro | Ameso | Vtotal | Vmico | Vmeso | ||
LC | 214.0 | 175.5 | 38.5 | 0.5319 | 0.1043 | 0.4276 | 9.94 |
FCC-C | 106.8 | 64.6 | 42.2 | 0.5716 | 0.0432 | 0.5329 | 24.97 |
函数 | 机理模型 | f(X) | G(X) |
---|---|---|---|
G(1) | 一维扩散 | 1/2X | X 2 |
G(2) | 二维扩散 | [-ln(1-X)]-1 | X+(1-X)ln(1-X) |
G(3) | 三维扩散(球形对称) | 3/2×(1-X)2/3[1-(1-X)1/3] -1 | [1-(1-X)1/3]2 |
G(4) | 三维扩散(圆柱形对称) | 3/2X[(1-X)-1/3-1] -1 | (1-2/3X)-(1-X)2/3 |
G(5) | 三维扩散 | 1.5(1+X)2/3[(1+X)1/3-1] -1 | [(1+X)1/3-1]2 |
G(6) | 成核与生长 (n =2/3) | 1.5(1-X)[-ln(1-X)]1/3 | [-ln(1-X)]2/3 |
G(7) | 成核与生长 (n =1/2) | 2(1-X)[-ln(1-X)]1/2 | [-ln(1-X)]1/2 |
G(8) | 成核与生长 (n =1/3) | 3(1-X)[-ln(1-X)]2/3 | [-ln(1-X)]1/3 |
G(9) | 成核与生长 (n =1/4) | 4(1-X)[-ln(1-X)]3/4 | [-ln(1-X)]1/4 |
G(10) | 自催化 | X(1-X) | ln[X/(1-X)] |
G(11) | Mampel power法则(n =1/2) | 2X1/2 | X1/2 |
G(12) | Mampel power法则(n =1/3) | 3X2/3 | X1/3 |
G(13) | Mampel power法则(n =1/4) | 4X3/4 | X1/4 |
G(14) | 化学反应(n =3) | (1-X)3 | [(1-X) -2-1]/2 |
G(15) | 化学反应(n =2) | (1-X)2 | (1-X) -1-1 |
G(16) | 化学反应(n=1) | 1-X | -ln(1-X) |
G(17) | 收缩几何形状(片状) | 1 | X |
G(18) | 收缩几何形状(球形对称) | 3(1-X)2/3 | 1-(1-X)1/3 |
G(19) | 收缩几何形状(圆柱形对称) | 2(1-X)1/2 | 1-(1-X)1/2 |
表4 常用的19种机理函数模型
Table 4 Typical reaction mechanisms for heterogeneous solid-state reaction
函数 | 机理模型 | f(X) | G(X) |
---|---|---|---|
G(1) | 一维扩散 | 1/2X | X 2 |
G(2) | 二维扩散 | [-ln(1-X)]-1 | X+(1-X)ln(1-X) |
G(3) | 三维扩散(球形对称) | 3/2×(1-X)2/3[1-(1-X)1/3] -1 | [1-(1-X)1/3]2 |
G(4) | 三维扩散(圆柱形对称) | 3/2X[(1-X)-1/3-1] -1 | (1-2/3X)-(1-X)2/3 |
G(5) | 三维扩散 | 1.5(1+X)2/3[(1+X)1/3-1] -1 | [(1+X)1/3-1]2 |
G(6) | 成核与生长 (n =2/3) | 1.5(1-X)[-ln(1-X)]1/3 | [-ln(1-X)]2/3 |
G(7) | 成核与生长 (n =1/2) | 2(1-X)[-ln(1-X)]1/2 | [-ln(1-X)]1/2 |
G(8) | 成核与生长 (n =1/3) | 3(1-X)[-ln(1-X)]2/3 | [-ln(1-X)]1/3 |
G(9) | 成核与生长 (n =1/4) | 4(1-X)[-ln(1-X)]3/4 | [-ln(1-X)]1/4 |
G(10) | 自催化 | X(1-X) | ln[X/(1-X)] |
G(11) | Mampel power法则(n =1/2) | 2X1/2 | X1/2 |
G(12) | Mampel power法则(n =1/3) | 3X2/3 | X1/3 |
G(13) | Mampel power法则(n =1/4) | 4X3/4 | X1/4 |
G(14) | 化学反应(n =3) | (1-X)3 | [(1-X) -2-1]/2 |
G(15) | 化学反应(n =2) | (1-X)2 | (1-X) -1-1 |
G(16) | 化学反应(n=1) | 1-X | -ln(1-X) |
G(17) | 收缩几何形状(片状) | 1 | X |
G(18) | 收缩几何形状(球形对称) | 3(1-X)2/3 | 1-(1-X)1/3 |
G(19) | 收缩几何形状(圆柱形对称) | 2(1-X)1/2 | 1-(1-X)1/2 |
Conversion ratio of gas during cracking | H2 | CH4 | ||||||
---|---|---|---|---|---|---|---|---|
FCC-C | LC | FCC-C | LC | |||||
Ea/(kJ/mol) | R2 | Ea/(kJ/mol) | R2 | Ea/(kJ/mol) | R2 | Ea/(kJ/mol) | R2 | |
0.2 | 21.8 | 0.865 | 23.0 | 0.991 | 66.8 | 0.976 | 43.6 | 0.969 |
0.4 | 40.4 | 0.994 | 31.5 | 0.995 | 68.2 | 0.963 | 47.4 | 0.951 |
0.6 | 68.5 | 0.964 | 82.2 | 0.993 | 107.9 | 0.980 | 78.1 | 0.923 |
0.8 | 88.3 | 0.999 | 53.8 | 0.987 | 129.5 | 0.996 | 124.1 | 0.999 |
average | 54.8 | — | 47.6 | — | 93.1 | — | 73.3 | — |
表5 Friedman法计算活化能
Table 5 Activation energies by the Friedman method
Conversion ratio of gas during cracking | H2 | CH4 | ||||||
---|---|---|---|---|---|---|---|---|
FCC-C | LC | FCC-C | LC | |||||
Ea/(kJ/mol) | R2 | Ea/(kJ/mol) | R2 | Ea/(kJ/mol) | R2 | Ea/(kJ/mol) | R2 | |
0.2 | 21.8 | 0.865 | 23.0 | 0.991 | 66.8 | 0.976 | 43.6 | 0.969 |
0.4 | 40.4 | 0.994 | 31.5 | 0.995 | 68.2 | 0.963 | 47.4 | 0.951 |
0.6 | 68.5 | 0.964 | 82.2 | 0.993 | 107.9 | 0.980 | 78.1 | 0.923 |
0.8 | 88.3 | 0.999 | 53.8 | 0.987 | 129.5 | 0.996 | 124.1 | 0.999 |
average | 54.8 | — | 47.6 | — | 93.1 | — | 73.3 | — |
Temp./℃ | 参数 | H2 | CH4 | ||||
---|---|---|---|---|---|---|---|
G(2) | G(4) | G(19) | G(4) | G(16) | G(19) | ||
700 | k(T) | 0.0109 | 0.0034 | 0.0093 | 0.0033 | 0.0532 | 0.0086 |
lnk(T) | -4.519 | -5.687 | -4.678 | -5.711 | -2.934 | -4.756 | |
R2 | 0.996 | 0.982 | 0.989 | 0.972 | 0.834 | 0.878 | |
750 | k(T) | 0.0098 | 0.0032 | 0.0080 | 0.0060 | 0.0947 | 0.0158 |
lnk(T) | -4.625 | -5.745 | -4.828 | -5.121 | -2.357 | -4.151 | |
R2 | 0.922 | 0.969 | 0.877 | 0.958 | 0.960 | 0.873 | |
800 | k(T) | 0.0104 | 0.0034 | 0.0087 | 0.0148 | 0.2253 | 0.0443 |
lnk(T) | -4.566 | -5.678 | -4.744 | -4.213 | -1.490 | -3.116 | |
R2 | 0.885 | 0.946 | 0.852 | 0.945 | 0.877 | 0.983 | |
850 | k(T) | 0.0270 | 0.0086 | 0.0230 | 0.0160 | 0.2585 | 0.0462 |
lnk(T) | -3.612 | -4.756 | -3.772 | -4.135 | -1.353 | -3.075 | |
R2 | 0.968 | 0.988 | 0.959 | 0.962 | 0.899 | 0.979 | |
Ea/(kJ/mol) | 53.6 | 50.2 | 48.9 | 73.6 | 102.5 | 111.2 |
表6 褐煤焦为载体裂解萘生成H2和CH4反应模型和动力学参数
Table 6 Reaction models and kinetic parameters for H2 and CH4 in naphthalene pyrolysis using LC
Temp./℃ | 参数 | H2 | CH4 | ||||
---|---|---|---|---|---|---|---|
G(2) | G(4) | G(19) | G(4) | G(16) | G(19) | ||
700 | k(T) | 0.0109 | 0.0034 | 0.0093 | 0.0033 | 0.0532 | 0.0086 |
lnk(T) | -4.519 | -5.687 | -4.678 | -5.711 | -2.934 | -4.756 | |
R2 | 0.996 | 0.982 | 0.989 | 0.972 | 0.834 | 0.878 | |
750 | k(T) | 0.0098 | 0.0032 | 0.0080 | 0.0060 | 0.0947 | 0.0158 |
lnk(T) | -4.625 | -5.745 | -4.828 | -5.121 | -2.357 | -4.151 | |
R2 | 0.922 | 0.969 | 0.877 | 0.958 | 0.960 | 0.873 | |
800 | k(T) | 0.0104 | 0.0034 | 0.0087 | 0.0148 | 0.2253 | 0.0443 |
lnk(T) | -4.566 | -5.678 | -4.744 | -4.213 | -1.490 | -3.116 | |
R2 | 0.885 | 0.946 | 0.852 | 0.945 | 0.877 | 0.983 | |
850 | k(T) | 0.0270 | 0.0086 | 0.0230 | 0.0160 | 0.2585 | 0.0462 |
lnk(T) | -3.612 | -4.756 | -3.772 | -4.135 | -1.353 | -3.075 | |
R2 | 0.968 | 0.988 | 0.959 | 0.962 | 0.899 | 0.979 | |
Ea/(kJ/mol) | 53.6 | 50.2 | 48.9 | 73.6 | 102.5 | 111.2 |
Temp./℃ | 参数 | H2 | CH4 | ||||
---|---|---|---|---|---|---|---|
G(3) | G(6) | G(16) | G (6) | G (7) | G (16) | ||
700 | k(T) | — | — | — | 0.0897 | 0.0664 | 0.1504 |
lnk(T) | — | — | — | -2.4113 | -2.7121 | -1.8945 | |
R2 | — | — | — | 0.9420 | 0.9255 | 0.8934 | |
750 | k(T) | 0.0663 | 0.2571 | 0.4516 | 0.1555 | 0.1100 | 0.2876 |
lnk(T) | -2.7136 | -1.3583 | -0.7950 | -1.8611 | -2.2073 | -1.2462 | |
R2 | 0.989 | 0.975 | 0.923 | 0.9504 | 0.9205 | 0.9359 | |
800 | k(T) | 0.0638 | 0.2556 | 0.4646 | 0.3208 | 0.2294 | 0.5849 |
lnk(T) | -2.7520 | -1.3641 | -0.7666 | -1.1369 | -1.4723 | -0.5363 | |
R2 | 0.987 | 0.982 | 0.987 | 0.9931 | 0.9796 | 0.9757 | |
850 | k(T) | 0.1169 | 0.4615 | 0.8806 | 0.3871 | 0.2769 | 0.7475 |
lnk(T) | -2.1464 | -0.7733 | -0.1272 | -0.9491 | -1.2841 | -0.2910 | |
R2 | 0.973 | 0.986 | 0.963 | 0.9898 | 0.9830 | 0.9505 | |
Ea/(kJ/mol) | 53.2 | 57.0 | 62.8 | 93.3 | 91.6 | 100.8 |
表7 FCC催化剂为载体裂解萘生成H2和CH4反应模型和动力学参数
Table 7 Reaction models and kinetic parameters for H2 and CH4 in naphthalene pyrolysis using FCC-C
Temp./℃ | 参数 | H2 | CH4 | ||||
---|---|---|---|---|---|---|---|
G(3) | G(6) | G(16) | G (6) | G (7) | G (16) | ||
700 | k(T) | — | — | — | 0.0897 | 0.0664 | 0.1504 |
lnk(T) | — | — | — | -2.4113 | -2.7121 | -1.8945 | |
R2 | — | — | — | 0.9420 | 0.9255 | 0.8934 | |
750 | k(T) | 0.0663 | 0.2571 | 0.4516 | 0.1555 | 0.1100 | 0.2876 |
lnk(T) | -2.7136 | -1.3583 | -0.7950 | -1.8611 | -2.2073 | -1.2462 | |
R2 | 0.989 | 0.975 | 0.923 | 0.9504 | 0.9205 | 0.9359 | |
800 | k(T) | 0.0638 | 0.2556 | 0.4646 | 0.3208 | 0.2294 | 0.5849 |
lnk(T) | -2.7520 | -1.3641 | -0.7666 | -1.1369 | -1.4723 | -0.5363 | |
R2 | 0.987 | 0.982 | 0.987 | 0.9931 | 0.9796 | 0.9757 | |
850 | k(T) | 0.1169 | 0.4615 | 0.8806 | 0.3871 | 0.2769 | 0.7475 |
lnk(T) | -2.1464 | -0.7733 | -0.1272 | -0.9491 | -1.2841 | -0.2910 | |
R2 | 0.973 | 0.986 | 0.963 | 0.9898 | 0.9830 | 0.9505 | |
Ea/(kJ/mol) | 53.2 | 57.0 | 62.8 | 93.3 | 91.6 | 100.8 |
1 | Zhang S, Song Y, Song Y C, et al. An advanced biomass gasification technology with integrated catalytic hot gas cleaning(Ⅲ): Effects of inorganic species in char on the reforming of tars from wood and agricultural wastes[J]. Fuel, 2016, 183: 177-184. |
2 | Guan G Q, Kaewpanha M, Hao X G, et al. Catalytic steam reforming of biomass tar: prospects and challenges[J]. Renewable and Sustainable Energy Reviews, 2016, 58: 450-461. |
3 | Morin M, Nitsch X, Pécate S, et al. Tar conversion over olivine and sand in a fluidized bed reactor using toluene as model compound[J]. Fuel, 2017, 209: 25-34. |
4 | Zhang S, Chen Z D, Zhang H Y, et al. The catalytic reforming of tar from pyrolysis and gasification of brown coal: effects of parental carbon materials on the performance of char catalysts[J]. Fuel Processing Technology, 2018, 174: 142-148. |
5 | 吴悠, 赵立欣, 孟海波, 等. 生物质热解焦油脱除方法研究进展[J]. 化工环保, 2016, 36(1): 17-21. |
Wu Y, Zhao L X, Meng H B, et al. Research progresses on removal of tar in biomass pyrolysis[J]. Environmental Protection of Chemical Industry, 2016, 36(1): 17-21. | |
6 | Phuphuakrat T, Namioka T, Yoshikawa K. Absorptive removal of biomass tar using water and oily materials[J]. Bioresource Technology, 2011, 102(2): 543-549. |
7 | 吴娟, 陈海军, 朱跃钊, 等. 基于回收理念的生物质燃气焦油脱除研究进展[J]. 化工进展, 2013, 32(9): 2099-2105, 2111. |
Wu J, Chen H J, Zhu Y Z, et al. Biomass producer gas tar removal technology based on recovery idea[J]. Chemical Industry and Engineering Progress, 2013, 32(9): 2099-2105, 2111. | |
8 | 赵善辉, 罗永浩, 苏毅, 等. 部分氧化对焦油模型化合物苯酚转化的机理[J]. 化工学报, 2013, 64(10): 3790-3796. |
Zhao S H, Luo Y H, Su Y, et al. Reaction mechanism for partial oxidation of biomass tar[J]. CIESC Journal, 2013, 64(10): 3790-3796. | |
9 | Zhang S, Asadullah M, Dong L, et al. An advanced biomass gasification technology with integrated catalytic hot gas cleaning(Ⅱ): Tar reforming using char as a catalyst or as a catalyst support[J]. Fuel, 2013, 112: 646-653. |
10 | Xu C, Donald J, Byambajav E, et al. Recent advances in catalysts for hot-gas removal of tar and NH3 from biomass gasification[J]. Fuel, 2010, 89(8): 1784-1795. |
11 | Quitete C P B, Souza M M V M. Application of Brazilian dolomites and mixed oxides as catalysts in tar removal system[J]. Applied Catalysis A: General, 2017, 536: 1-8. |
12 | Florin N H, Harris A T. Enhanced hydrogen production from biomass with in situ carbon dioxide capture using calcium oxide sorbents[J]. Chemical Engineering Science, 2008, 63(2): 287-316. |
13 | de Andrés J M, Narros A, Rodríguez M E. Behaviour of dolomite, olivine and alumina as primary catalysts in air-steam gasification of sewage sludge[J]. Fuel, 2011, 90(2): 521-527. |
14 | 刘殊远, 汪印, 武荣成, 等. 热态半焦和冷态半焦催化裂解煤焦油研究[J]. 燃料化学学报, 2013, 41(9): 1041-1049. |
Liu S Y, Wang Y, Wu R C, et al. Research on coal tar catalytic cracking over hot in situ chars[J]. Journal of Fuel Chemistry and Technology, 2013, 41(9): 1041-1049. | |
15 | 王芳, 曾玺, 孙延林, 等. 两段流化床中半焦催化脱除焦油特性[J]. 化工学报, 2017, 68(10): 3762-3769. |
Wang F, Zeng X, Sun Y L, et al. Characteristics of char catalytic reforming of tar in two-stage fluidized bed[J]. CIESC Journal, 2017, 68(10): 3762-3769. | |
16 | Zhang L X, Matsuhara T, Kudo S, et al. Rapid pyrolysis of brown coal in a drop-tube reactor with co-feeding of char as a promoter of in situ tar reforming[J]. Fuel, 2013, 112: 681-686. |
17 | Wang F J, Zhang S, Chen Z D, et al. Tar reforming using char as catalyst during pyrolysis and gasification of Shengli brown coal[J]. Journal of Analytical and Applied Pyrolysis, 2014, 105: 269-275. |
18 | Sun Q S, Yu S, Wang F C, et al. Decomposition and gasification of pyrolysis volatiles from pine wood through a bed of hot char[J]. Fuel, 2011, 90(3): 1041-1048. |
19 | Abu El-Rub Z, Bramer E A, Brem G. Experimental comparison of biomass chars with other catalysts for tar reduction[J]. Fuel, 2008, 87(10/11): 2243-2252. |
20 | Bangala D N, Abatzoglou N, Martin J P, et al. Catalytic gas conditioning: application to biomass and waste gasification[J]. Industrial & Engineering Chemistry Research, 1997, 36(10): 4184-4192. |
21 | Milne T A, Evans R J, Abatzaglou N. Biomass gasifier “Tars”: their nature, formation, and conversion[R]. Office of Scientific and Technical Information (OSTI), 1998. |
22 | Fuentes-Cano D, Gómez-Barea A, Nilsson S, et al. Decomposition kinetics of model tar compounds over chars with different internal structure to model hot tar removal in biomass gasification[J]. Chemical Engineering Journal, 2013, 228: 1223-1233. |
23 | Jess A. Mechanisms and kinetics of thermal reactions of aromatic hydrocarbons from pyrolysis of solid fuels[J]. Fuel, 1996, 75(12): 1441-1448. |
24 | Devi L, Craje M, Thüne P, et al. Olivine as tar removal catalyst for biomass gasifiers: catalyst characterization[J]. Applied Catalysis A: General, 2005, 294(1): 68-79. |
25 | de Lasa H, Salaices E, Mazumder J, et al. Catalytic steam gasification of biomass: catalysts, thermodynamics and kinetics[J]. Chemical Reviews, 2011, 111(9): 5404-5433. |
26 | Buentello-Montoya D A, Zhang X, Li J. The use of gasification solid products as catalysts for tar reforming[J]. Renewable and Sustainable Energy Reviews, 2019, 107: 399-412. |
27 | Vassilev S V, Baxter D, Andersen L K, et al. An overview of the composition and application of biomass ash(2): Potential utilisation, technological and ecological advantages and challenges[J]. Fuel, 2013, 105: 19-39. |
28 | Wornat M J, Nelson P F. Effects of ion-exchanged calcium on brown coal tar composition as determined by Fourier transform infrared spectroscopy[J]. Energy & Fuels, 1992, 6(2): 136-142. |
29 | Fuentes-Cano D, Parrillo F, Ruoppolo G, et al. The influence of the char internal structure and composition on heterogeneous conversion of naphthalene[J]. Fuel Processing Technology, 2018, 172: 125-132. |
30 | 姜微微, 郝文倩, 刘雪景, 等. 微型流化床内菱镁矿轻烧反应特性及动力学[J]. 化工学报, 2019, 70(8): 2928-2937. |
Jiang W W, Hao W Q, Liu X J, et al. Characteristic and kinetics of light calcination of magnesite in micro fluidized bed reaction analyzer[J]. CIESC Journal, 2019, 70(8): 2928-2937. | |
31 | Valderrama Rios M L, González A M, Lora E E S, et al. Reduction of tar generated during biomass gasification: a review[J]. Biomass and Bioenergy, 2018, 108: 345-370. |
32 | Shen Y F, Yoshikawa K. Recent progresses in catalytic tar elimination during biomass gasification or pyrolysis—a review[J]. Renewable and Sustainable Energy Reviews, 2013, 21: 371-392. |
33 | Gai C, Dong Y P, Lv Z C, et al. Pyrolysis behavior and kinetic study of phenol as tar model compound in micro fluidized bed reactor[J]. International Journal of Hydrogen Energy, 2015, 40(25): 7956-7964. |
[1] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[2] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[3] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[4] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[5] | 赵志萍, 陈晨, 汤琼, 徐红, 刘雷, 董晋湘. 多己基萘/聚α-烯烃锂基润滑脂的流变学和摩擦学性能[J]. 化工学报, 2023, 74(6): 2555-2564. |
[6] | 禹进, 余彬彬, 蒋新生. 一种基于虚拟组分的燃烧调控化学作用量化及分析方法研究[J]. 化工学报, 2023, 74(3): 1303-1312. |
[7] | 白宇恩, 张彬瑞, 刘东阳, 赵亮, 高金森, 徐春明. ZSM-5分子筛酸性能和孔结构的协同作用对C5烯烃催化裂解性能的影响[J]. 化工学报, 2023, 74(1): 438-448. |
[8] | 张秋华, 刘曼路, 王峥, 张一鸣, 苏海佳. 维生素K2的生物合成及其甲萘醌基团合成酶的功能分析[J]. 化工学报, 2023, 74(1): 342-354. |
[9] | 陈晨, 杨倩, 陈云, 张睿, 刘冬. 不同氧浓度下煤挥发分燃烧的化学动力学研究[J]. 化工学报, 2022, 73(9): 4133-4146. |
[10] | 王凯玥, 马永丽, 李琛, 刘明言. 气液固微型流化床的气液传质系数[J]. 化工学报, 2022, 73(8): 3529-3540. |
[11] | 陈玉弓, 陈昊, 黄耀松. 基于分子反应动力学模拟的六甲基二硅氧烷热解机理研究[J]. 化工学报, 2022, 73(7): 2844-2857. |
[12] | 何聪, 钟文琪, 周冠文, 陈曦. 高海拔地区水泥生料悬浮炉分解特性研究[J]. 化工学报, 2022, 73(5): 2120-2129. |
[13] | 王敏, 程金兰, 李鑫, 陆晶晶, 尹崇鑫, 戴红旗. 酸性助水溶剂脱除木质素机理分析[J]. 化工学报, 2022, 73(5): 2206-2221. |
[14] | 杨霄, 丁锐, 李墨含, 宋正昶. 氧浓度对微通道内甲烷均相/非均相耦合反应特性的影响[J]. 化工学报, 2022, 73(12): 5427-5437. |
[15] | 龚翔, 李林森, 姜召. PdCo/SiO2双金属催化剂用于杂环储氢载体的高效脱氢[J]. 化工学报, 2022, 73(10): 4448-4460. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||