化工学报 ›› 2021, Vol. 72 ›› Issue (12): 6282-6290.DOI: 10.11949/0438-1157.20211073
收稿日期:
2021-08-02
修回日期:
2021-09-30
出版日期:
2021-12-05
发布日期:
2021-12-22
通讯作者:
孟祥海
作者简介:
殷梦凡(1997—),女,硕士研究生,基金资助:
Mengfan YIN(),Zheng TANG,Rui ZHANG,Zhichang LIU,Haiyan LIU,Chunming XU,Xianghai MENG()
Received:
2021-08-02
Revised:
2021-09-30
Online:
2021-12-05
Published:
2021-12-22
Contact:
Xianghai MENG
摘要:
将直馏石脑油分离为脂肪烃和芳烃有助于实现石脑油资源的优化利用,溶剂萃取是芳烃/脂肪烃分离的重要途径,萃取剂的设计与优选对萃取过程至关重要。实验探究了多种离子液体对正辛烷/邻二甲苯混合物萃取分离的效果,以萃取选择性、分配系数和萃取性能指数作为评价指标优选出1-丁基-2,3-二甲基咪唑四氯化铁([Bm2im][FeCl4])萃取剂。对于中低浓度芳烃体系(<33%),在30℃、溶剂质量比为4时,邻二甲苯萃取选择性在45以上,分配系数在0.38~0.40,萃取性能指数在18以上,单次萃取脱芳率可达60%以上。相比传统的环丁砜萃取剂,[Bm2im][FeCl4]萃取剂可以使体系具有更大的两相区,易于正辛烷/邻二甲苯的分离。利用量子化学软件探究[Bm2im][FeCl4]与正辛烷/邻二甲苯的弱相互作用,并计算其结合能,解释离子液体高选择性萃取邻二甲苯的原因。
中图分类号:
殷梦凡, 唐政, 张睿, 刘植昌, 刘海燕, 徐春明, 孟祥海. 离子液体液液萃取分离正辛烷/邻二甲苯[J]. 化工学报, 2021, 72(12): 6282-6290.
Mengfan YIN, Zheng TANG, Rui ZHANG, Zhichang LIU, Haiyan LIU, Chunming XU, Xianghai MENG. Separation of n-octane and o-xylene by liquid-liquid extraction with ionic liquids[J]. CIESC Journal, 2021, 72(12): 6282-6290.
密度①/(g·cm-1) | 黏度①/(mPa·s) | 热分解温度/℃ | 玻璃化转变温度/℃ |
---|---|---|---|
1.34 | 69.52 | 329.5 | -75.1 |
表1 [Bm2im][FeCl4]基本物性
Table 1 Basic properties of [Bm2im][FeCl4]
密度①/(g·cm-1) | 黏度①/(mPa·s) | 热分解温度/℃ | 玻璃化转变温度/℃ |
---|---|---|---|
1.34 | 69.52 | 329.5 | -75.1 |
[Bmim][FeCl4] | [Bmim][AlCl4] | [Bmim][BF4] | [Bmim][CF3SO3] |
---|---|---|---|
27.73 | 22.64 | 78.27 | 63.76 |
表2 离子液体黏度/(mPa·s)
Table 2 Viscosity of ionic liquids/(mPa·s)
[Bmim][FeCl4] | [Bmim][AlCl4] | [Bmim][BF4] | [Bmim][CF3SO3] |
---|---|---|---|
27.73 | 22.64 | 78.27 | 63.76 |
阳离子影响 因素 | 萃取剂 | 分配系数 | 选择性 | PI | |
---|---|---|---|---|---|
邻二甲苯 | 正辛烷 | ||||
烷基侧链长度 | [Emim][FeCl4] | 0.3150 | 0.0062 | 51.21 | 16.13 |
[Bmim][FeCl4] | 0.3600 | 0.0114 | 31.69 | 11.41 | |
[Hmim][FeCl4] | 0.4667 | 0.0242 | 19.26 | 8.99 | |
[Omim][FeCl4] | 0.5303 | 0.0323 | 16.43 | 8.71 | |
烷基侧链数量 | [Bm2im][FeCl4] | 0.3400 | 0.0083 | 41.00 | 13.94 |
极性基团 | [HOEtmim][FeCl4] | 0.1043 | 0.0012 | 90.26 | 9.41 |
[Bzmim][FeCl4] | 0.2577 | 0.0062 | 41.38 | 10.66 | |
[Amim][FeCl4] | 0.2900 | 0.0072 | 40.34 | 11.70 |
表3 咪唑阳离子对邻二甲苯萃取选择性、分配系数和PI的影响
Table 3 Influence of imidazole cations on the extraction selectivity of o-xylene, distribution coefficient and PI
阳离子影响 因素 | 萃取剂 | 分配系数 | 选择性 | PI | |
---|---|---|---|---|---|
邻二甲苯 | 正辛烷 | ||||
烷基侧链长度 | [Emim][FeCl4] | 0.3150 | 0.0062 | 51.21 | 16.13 |
[Bmim][FeCl4] | 0.3600 | 0.0114 | 31.69 | 11.41 | |
[Hmim][FeCl4] | 0.4667 | 0.0242 | 19.26 | 8.99 | |
[Omim][FeCl4] | 0.5303 | 0.0323 | 16.43 | 8.71 | |
烷基侧链数量 | [Bm2im][FeCl4] | 0.3400 | 0.0083 | 41.00 | 13.94 |
极性基团 | [HOEtmim][FeCl4] | 0.1043 | 0.0012 | 90.26 | 9.41 |
[Bzmim][FeCl4] | 0.2577 | 0.0062 | 41.38 | 10.66 | |
[Amim][FeCl4] | 0.2900 | 0.0072 | 40.34 | 11.70 |
溶剂比 | 萃余相 | 萃取相 | 分配系数 | 选择性 | PI | 脱芳率 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
xo-xylene | xn-octane | xIL | xo-xylene | xn-octane | xIL | 邻二甲苯 | 正辛烷 | ||||
mn-octane∶mo-xylene= 2∶1 | |||||||||||
0.5 | 0.3003 | 0.6997 | 0.0000 | 0.0873 | 0.0043 | 0.9084 | 0.2906 | 0.0062 | 46.87 | 13.62 | 14.41% |
1 | 0.2622 | 0.7378 | 0.0000 | 0.0892 | 0.0061 | 0.9047 | 0.3400 | 0.0083 | 41.00 | 13.94 | 29.58% |
2 | 0.2036 | 0.7964 | 0.0000 | 0.0761 | 0.0062 | 0.9177 | 0.3736 | 0.0078 | 47.97 | 17.92 | 49.83% |
3 | 0.1666 | 0.8334 | 0.0000 | 0.0642 | 0.0088 | 0.9270 | 0.3843 | 0.0095 | 40.64 | 15.62 | 61.90% |
4 | 0.1357 | 0.8643 | 0.0000 | 0.0545 | 0.0067 | 0.9388 | 0.4017 | 0.0087 | 46.32 | 18.61 | 69.71% |
5 | 0.1204 | 0.8796 | 0.0000 | 0.0475 | 0.0073 | 0.9452 | 0.3942 | 0.0083 | 47.54 | 18.74 | 74.47% |
mn-octane∶mo-xylene= 4∶1 | |||||||||||
4 | 0.0819 | 0.9181 | 0.0000 | 0.0313 | 0.0052 | 0.9635 | 0.3824 | 0.0056 | 67.73 | 25.90 | 65.00% |
mn-octane∶mo-xylene= 9∶1 | |||||||||||
4 | 0.0408 | 0.9592 | 0.0000 | 0.0162 | 0.0068 | 0.9770 | 0.3964 | 0.0071 | 56.21 | 22.28 | 64.05% |
表4 溶剂质量比对LLE影响
Table 4 Influence of mass ratio of solvent to feed on LLE
溶剂比 | 萃余相 | 萃取相 | 分配系数 | 选择性 | PI | 脱芳率 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
xo-xylene | xn-octane | xIL | xo-xylene | xn-octane | xIL | 邻二甲苯 | 正辛烷 | ||||
mn-octane∶mo-xylene= 2∶1 | |||||||||||
0.5 | 0.3003 | 0.6997 | 0.0000 | 0.0873 | 0.0043 | 0.9084 | 0.2906 | 0.0062 | 46.87 | 13.62 | 14.41% |
1 | 0.2622 | 0.7378 | 0.0000 | 0.0892 | 0.0061 | 0.9047 | 0.3400 | 0.0083 | 41.00 | 13.94 | 29.58% |
2 | 0.2036 | 0.7964 | 0.0000 | 0.0761 | 0.0062 | 0.9177 | 0.3736 | 0.0078 | 47.97 | 17.92 | 49.83% |
3 | 0.1666 | 0.8334 | 0.0000 | 0.0642 | 0.0088 | 0.9270 | 0.3843 | 0.0095 | 40.64 | 15.62 | 61.90% |
4 | 0.1357 | 0.8643 | 0.0000 | 0.0545 | 0.0067 | 0.9388 | 0.4017 | 0.0087 | 46.32 | 18.61 | 69.71% |
5 | 0.1204 | 0.8796 | 0.0000 | 0.0475 | 0.0073 | 0.9452 | 0.3942 | 0.0083 | 47.54 | 18.74 | 74.47% |
mn-octane∶mo-xylene= 4∶1 | |||||||||||
4 | 0.0819 | 0.9181 | 0.0000 | 0.0313 | 0.0052 | 0.9635 | 0.3824 | 0.0056 | 67.73 | 25.90 | 65.00% |
mn-octane∶mo-xylene= 9∶1 | |||||||||||
4 | 0.0408 | 0.9592 | 0.0000 | 0.0162 | 0.0068 | 0.9770 | 0.3964 | 0.0071 | 56.21 | 22.28 | 64.05% |
能量 | o-xylene | n-octane | [Bm2im][FeCl4] | sulfolane | [Bm2im][FeCl4]+o-xylene | [Bm2im][FeCl4]+n-octane | sulfolane+o-xylene | sulfolane+n-octane |
---|---|---|---|---|---|---|---|---|
E①/hartree | -310.64 | -315.46 | -3566.45 | -705.57 | -3877.11 | -3881.92 | -1016.23 | -1021.04 |
E②/(kJ·mol-1) | -815595.18 | -828240.35 | -9363701 | -1852478.6 | -10179343.99 | -10191972.85 | -2668110.29 | -2680739.29 |
ΔE③/(kJ·mol-1) | -47.81 | -31.5 | -37.51 | -21.34 |
表5 不同萃取剂对正辛烷/邻二甲苯的结合能
Table 5 Binding energies of different solvents for n-octane/o-xylene
能量 | o-xylene | n-octane | [Bm2im][FeCl4] | sulfolane | [Bm2im][FeCl4]+o-xylene | [Bm2im][FeCl4]+n-octane | sulfolane+o-xylene | sulfolane+n-octane |
---|---|---|---|---|---|---|---|---|
E①/hartree | -310.64 | -315.46 | -3566.45 | -705.57 | -3877.11 | -3881.92 | -1016.23 | -1021.04 |
E②/(kJ·mol-1) | -815595.18 | -828240.35 | -9363701 | -1852478.6 | -10179343.99 | -10191972.85 | -2668110.29 | -2680739.29 |
ΔE③/(kJ·mol-1) | -47.81 | -31.5 | -37.51 | -21.34 |
3 | 许杰, 朱玉明, 郝立刚. 芳烃分离技术进展[J]. 石化技术与应用, 2005, 23(3): 228-230, 5. |
Xu J, Zhu Y M, Hao L G. Progress of separation technologies for aromatics[J]. Pebrochemical Technology & Application, 2005, 23(3): 228-230, 5. | |
4 | 王净依, 田龙胜, 唐文成, 等. 环丁砜抽提蒸馏-液液抽提组合工艺的工业应用[J]. 石油炼制与化工, 2002, 33(6): 19-22. |
Wang J Y, Tian L S, Tang W C, et al. Commercial application of a combined process of extractive distillation and liquid-liquid extraction using sulfolane[J]. Petroleum Processing and Petrochemicals, 2002, 33(6): 19-22. | |
5 | Ali S H, Lababidi H M S, Merchant S Q, et al. Extraction of aromatics from naphtha reformate using propylene carbonate[J]. Fluid Phase Equilibria, 2003, 214(1): 25-38. |
6 | 朱慧, 史贤林, 周文勇. N-甲酰吗啉萃取精馏分离芳烃和非芳烃的工艺模拟与过程参数优化[J]. 华东理工大学学报(自然科学版), 2008, 34(3): 309-314. |
Zhu H, Shi X L, Zhou W Y. Process simulation and parameter optimization of separating aromatics and non-aromatics by extractive distillation with N-formylmorpholine[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2008, 34(3): 309-314. | |
7 | 朱吉钦, 陈健, 费维扬. 新型离子液体用于芳烃、烯烃与烷烃分离的初步研究[J]. 化工学报, 2004, 55(12): 2091-2094. |
Zhu J Q, Chen J, Fei W Y. Separation of aromatic hydrocarbons or olefins from paraffins using new ionic liquids[J]. Journal of Chemical Industry and Engineering (China), 2004, 55(12): 2091-2094. | |
8 | 赵金政, 周国辉, 刘晓敏. 离子液体在生物质溶解分离中的应用与机理研究[J]. 化工学报, 2021, 72(1): 247-258. |
Zhao J Z, Zhou G H, Liu X M. Study on application and mechanism of ionic liquids in biomass dissolution and separation[J]. CIESC Journal, 2021, 72(1): 247-258. | |
9 | 吴沛文, 荀苏杭, 蒋伟, 等. 离子液体反应型萃取燃油脱硫研究进展[J]. 化工学报, 2021, 72(1): 276-291. |
Wu P W, Xun S H, Jiang W, et al. Recent progress on extractive desulfurization of fuel oils through reactions based on ionic liquids as solvents and catalysts[J]. CIESC Journal, 2021, 72(1): 276-291. | |
1 | Yang X G, Zhang X Q, Dong H X, et al. (Liquid+liquid) equilibria for (benzene+cyclohexane+dimethyl sulfoxide) system at T=(298.15 or 303.15) K: experimental data and correlation[J]. The Journal of Chemical Thermodynamics, 2015, 84: 14-17. |
2 | Wytze Meindersma G, Podt A G, de Haan A B. Selection of ionic liquids for the extraction of aromatic hydrocarbons from aromatic/aliphatic mixtures[J]. Fuel Processing Technology, 2005, 87(1): 59-70. |
10 | 李文秀, 张羽, 曹颖, 等. 离子液体用于四氢呋喃-乙醇-水三元共沸物系分离的研究[J]. 化工学报, 2020, 71(4): 1676-1682. |
Li W X, Zhang Y, Cao Y, et al. Study on separation of tetrahydrofuran-ethanol-water ternary azeotrope system by ionic liquid[J]. CIESC Journal, 2020, 71(4): 1676-1682. | |
11 | 张亚宁, 伍洛, 张睿, 等. 双金属复合离子液体的结构、性质与应用[J]. 中国科学: 化学, 2021, 51(8): 1-15. |
Zhang Y N, Wu L, Zhang R, et al. Structures, properties and applications of bimetallic composite ionic liquids[J]. Scientia Sinica Chimica, 2021, 51(8): 1-15. | |
12 | Kapoor U, Shah J K. Monte Carlo simulations of pure and mixed gas solubilities of CO2 and CH4 in nonideal ionic liquid-ionic liquid mixtures[J]. Industrial & Engineering Chemistry Research, 2019, 58(50): 22569-22578. |
13 | Rout A, Binnemans K. Solvent extraction of neodymium(Ⅲ) by functionalized ionic liquid trioctylmethylammonium dioctyl diglycolamate in fluorine-free ionic liquid diluent[J]. Industrial & Engineering Chemistry Research, 2014, 53(15): 6500-6508. |
14 | Yang B B, Bai L, Wang Z L, et al. Exploring NH3 transport properties by tailoring ionic liquids in pebax-based hybrid membranes[J]. Industrial & Engineering Chemistry Research, 2021, 60(26): 9570-9577. |
15 | 曾少娟, 尚大伟, 余敏, 等. 离子液体在氨气分离回收中的应用及展望[J]. 化工学报, 2019, 70(3): 791-800. |
Zeng S J, Shang D W, Yu M, et al. Applications and perspectives of NH3 separation and recovery with ionic liquids[J]. CIESC Journal, 2019, 70(3): 791-800. | |
16 | 郭少聪, 杨启炜, 邢华斌, 等. 离子液体-分子溶剂复合萃取剂脱除水中酚类化合物[J]. 化工学报, 2016, 67(7): 2851-2856. |
Guo S C, Yang Q W, Xing H B, et al. Removal of phenols from aqueous solution by ionic liquid-molecular solvent composite extractant[J]. CIESC Journal, 2016, 67(7): 2851-2856. | |
17 | 李瑞, 崔现宝, 吴添, 等. 基于COSMO-SAC模型的离子液体萃取剂的选择[J]. 化工学报, 2013, 64(2): 452-469. |
Li R, Cui X B, Wu T, et al. Selection of ionic liquid solvent for liquid-liquid extraction based on COSMO-SAC model[J]. CIESC Journal, 2013, 64(2): 452-469. | |
18 | Ma H, Zhang R, Meng X H, et al. Solid formation during composite-ionic-liquid-catalyzed isobutane alkylation[J]. Energy & Fuels, 2014, 28(8): 5389-5395. |
19 | Yao B J, Wu W X, Ding L G, et al. Sulfonic acid and ionic liquid functionalized covalent organic framework for efficient catalysis of the biginelli reaction[J]. The Journal of Organic Chemistry, 2021, 86(3): 3024-3032. |
20 | Tu J G, Kou M Y, Wang M Y, et al. Electrochemical behavior of NiCl2/Ni in acidic AlCl3-based ionic liquid electrolyte[J]. Inorganic Chemistry Frontiers, 2020, 7(9): 1909-1917. |
21 | Tu J G, Wang M Y, Xiao X, et al. Nickel phosphide nanosheets supported on reduced graphene oxide for enhanced aluminum-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(6): 6004-6012. |
22 | Lin C, Li W P, Yan Y R, et al. Ultrafine electrospun fiber based on ionic liquid/AlN/copolyamide composite as novel form-stable phase change material for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2021, 223: 110953. |
23 | Canales R I, Brennecke J F. Comparison of ionic liquids to conventional organic solvents for extraction of aromatics from aliphatics[J]. Journal of Chemical & Engineering Data, 2016, 61(5): 1685-1699. |
24 | Navarro P, Larriba M, García J, et al. Design of the recovery section of the extracted aromatics in the separation of BTEX from naphtha feed to ethylene crackers using [4empy][Tf2N] and [emim][DCA] mixed ionic liquids as solvent[J]. Separation and Purification Technology, 2017, 180: 149-156. |
25 | 王孝科, 田敉. 离子液体萃取精馏分离苯-环己烷物系[J]. 石油化工, 2008, 37(9): 905-909. |
Wang X K, Tian M. Separation of benzene-cyclohexane by extractive distillation with ionic liquid[J]. Petrochemical Technology, 2008, 37(9): 905-909. | |
26 | Hossain M A, Lee J S, Kim D H, et al. Ionic liquids as benign solvents for the extraction of aromatics[J]. Bulletin of the Korean Chemical Society, 2012, 33(10): 3241-3247. |
27 | Nejad N F, Zand E K. A new approach to dearomatization of gasoline by ionic liquid and liquid-liquid extraction[J]. Petroleum Science and Technology, 2011, 29(22): 2372-2376. |
28 | Yao C F, Hou Y C, Wu W Z, et al. Imidazolium-based dicationic ionic liquids: highly efficient extractants for separating aromatics from aliphatics[J]. Green Chemistry, 2018, 20(13): 3101-3111. |
29 | Meindersma G W, Haan A B. Cyano-containing ionic liquids for the extraction of aromatic hydrocarbons from an aromatic/aliphatic mixture[J]. Science China Chemistry, 2012, 55(8): 1488-1499. |
30 | Addouni M, Benyounes H, Jin S, et al. Extraction process design for the separation of aromatic and aliphatic hydrocarbons using organic solvent, ionic liquid or their mixture: a comparative study[J]. Brazilian Journal of Chemical Engineering, 2020, 37(1): 307-322. |
31 | Alkhaldi K H A E, Al-Jimaz A S, AlTuwaim M S. Liquid extraction of toluene from heptane, octane, or nonane using mixed ionic solvents of 1-ethyl-3-methylimidazolium methylsulfate and 1-hexyl-3-methylimidazolium hexafluorophosphate[J]. Journal of Chemical & Engineering Data, 2019, 64(1): 169-175. |
32 | Zhang F, Li Y, Zhang L L, et al. Benzyl-and vinyl-functionalized imidazoium ionic liquids for selective separating aromatic hydrocarbons from alkanes[J]. Industrial & Engineering Chemistry Research, 2016, 55(3): 747-756. |
33 | Vázquez-Montelongo E A, Cisneros G A, Flores-Ruiz H M. Multipolar/polarizable molecular dynamics simulations of liquid-liquid extraction of benzene from hydrocarbons using ionic liquids[J]. Journal of Molecular Liquids, 2019, 296: 111846. |
34 | 童浩. 离子液体萃取分离芳烃/脂肪烃的研究[D]. 北京: 中国石油大学, 2016. |
Tong H. Separation of aromatic and aliphatic hydrocarborn by ionic liquids[D]. Beijing: China University of Petroleum, 2016. | |
35 | Lu T, Chen F W. Multiwfn: a multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592. |
36 | Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics[J]. Journal of Molecular Graphics, 1996, 14(1): 33-38. |
37 | Anantharaj R, Banerjee T. COSMO-RS-based screening of ionic liquids as green solvents in denitrification studies[J]. Industrial & Engineering Chemistry Research, 2010, 49(18): 8705-8725. |
38 | Adamo C, Barone V. Toward reliable density functional methods without adjustable parameters: the PBE0 model[J]. The Journal of Chemical Physics, 1999, 110(13): 6158-6170. |
39 | Turner E A, Pye C C, Singer R D. Use of ab initio calculations toward the rational design of room temperature ionic liquids[J]. The Journal of Physical Chemistry A, 2003, 107(13): 2277-2288. |
40 | 姜盼. 离子液体与有机溶剂液液相平衡的测定与研究[D]. 天津: 天津大学, 2010. |
Jiang P. Measurement and study on the liquid-liquid equilibrium of ionic liquids with organic solvent[D]. Tianjin: Tianjin University, 2010. | |
41 | 汤芳, 周尉, 曹为民, 等. 二元溶剂[Bmim]Cl+NMP对褐煤的溶胀及电解液化的影响[J]. 复旦学报(自然科学版), 2016, 55(6): 725-731. |
Tang F, Zhou W, Cao W M, et al. Swelling of brown coal in binary solvent [Bmim]Cl+NMP and its effect on coal electrolysis liquefaction[J]. Journal of Fudan University (Natural Science), 2016, 55(6): 725-731. | |
42 | Holbrey J D, Reichert W M, Nieuwenhuyzen M, et al. Liquid clathrate formation in ionic liquid-aromatic mixtures[J]. Chemical Communications, 2003(4): 476-477. |
[1] | 王琪, 张斌, 张晓昕, 武虎建, 战海涛, 王涛. 氯铝酸-三乙胺离子液体/P2O5催化合成伊索克酸和2-乙基蒽醌[J]. 化工学报, 2023, 74(S1): 245-249. |
[2] | 车睿敏, 郑文秋, 王小宇, 李鑫, 许凤. 基于离子液体的纤维素均相加工研究进展[J]. 化工学报, 2023, 74(9): 3615-3627. |
[3] | 赵亚欣, 张雪芹, 王荣柱, 孙国, 姚善泾, 林东强. 流穿模式离子交换层析去除单抗聚集体[J]. 化工学报, 2023, 74(9): 3879-3887. |
[4] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[5] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[6] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[7] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[8] | 王俐智, 杭钱程, 郑叶玲, 丁延, 陈家继, 叶青, 李进龙. 离子液体萃取剂萃取精馏分离丙酸甲酯+甲醇共沸物[J]. 化工学报, 2023, 74(9): 3731-3741. |
[9] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[10] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[11] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[12] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
[13] | 刘爽, 张霖宙, 许志明, 赵锁奇. 渣油及其组分黏度的分子层次组成关联研究[J]. 化工学报, 2023, 74(8): 3226-3241. |
[14] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[15] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 359
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 472
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||