化工学报 ›› 2021, Vol. 72 ›› Issue (2): 1009-1017.DOI: 10.11949/0438-1157.20201038
收稿日期:
2020-07-28
修回日期:
2020-09-08
出版日期:
2021-02-05
发布日期:
2021-02-05
通讯作者:
孙伟振
作者简介:
吕全明(1991—),男,博士研究生,基金资助:
LYU Quanming1(),SUN Weizhen1(
),ZHAO Ling1,2
Received:
2020-07-28
Revised:
2020-09-08
Online:
2021-02-05
Published:
2021-02-05
Contact:
SUN Weizhen
摘要:
连四甲苯(PR)液相氧化制备苯偏四甲酸(MPA)是合成聚偏苯四甲酰亚胺单体的关键步骤。本文首先采用基团贡献法对MPA的热力学参数进行了估算,进一步分析了PR氧化过程热力学参数随温度的变化。结果表明,在研究温度范围内,该氧化过程为强放热反应,反应过程中需要及时移除反应热以控制温度的波动。通过间歇实验研究了不同催化剂浓度和温度对反应的影响,动力学实验结果表明,保持催化剂总浓度不变,改变催化剂配比对PR氧化速率影响不大,但是提高Mn浓度对MPA生成速率的提升效果最佳;升高温度能够明显提升目标产物MPA的选择性。基于自由基链式反应机理,建立了简化的PR氧化集总动力学模型,拟合回归得到苯环上首个甲基氧化的活化能为57.20 kJ·mol-1;但是苯环上部分甲基被氧化为羧基后,其他甲基氧化的活化能增加为120.30 kJ·mol-1,说明羧基的存在使甲基活性变弱,被进一步氧化的难度增加。论文相关研究成果可为MPA生产新工艺的开发和工业反应器设计提供参考依据。
中图分类号:
吕全明, 孙伟振, 赵玲. 连四甲苯液相氧化过程热力学分析及动力学模拟[J]. 化工学报, 2021, 72(2): 1009-1017.
LYU Quanming, SUN Weizhen, ZHAO Ling. Thermodynamic analysis and kinetic simulation of liquid phase oxidation of prehnitene to mellophanic acid[J]. CIESC Journal, 2021, 72(2): 1009-1017.
方法 | (kJ ? mol-1) | (J ? mol-1 ? K-1) | Cp/(J ? mol-1 ? K-1) | |||||
---|---|---|---|---|---|---|---|---|
300 K | 400 K | 500 K | 600 K | 800 K | 1000 K | |||
文献值[ | -1480.00 | 619.00 | 168.01 | 224.33 | 271.54 | 310.78 | 369.95 | 411.02 |
Benson法 | -1475.92 | — | 162.78 | 230.48 | 281.94 | 322.42 | 378.88 | 414.98 |
ABWY法 | -1397.14 | 625.74 | 183.92 | 239.34 | 289.50 | 334.40 | 408.43 | 461.44 |
Benson法相对偏差 | -0.28 | — | -3.11 | 2.74 | 3.83 | 3.75 | 2.41 | 0.96 |
ABWY法相对偏差 | -5.60 | 1.09 | 9.62 | 6.69 | 6.61 | 7.60 | 10.40 | 12.27 |
表1 PMA的热力学数据
Table 1 Thermodynamic data for PMA
方法 | (kJ ? mol-1) | (J ? mol-1 ? K-1) | Cp/(J ? mol-1 ? K-1) | |||||
---|---|---|---|---|---|---|---|---|
300 K | 400 K | 500 K | 600 K | 800 K | 1000 K | |||
文献值[ | -1480.00 | 619.00 | 168.01 | 224.33 | 271.54 | 310.78 | 369.95 | 411.02 |
Benson法 | -1475.92 | — | 162.78 | 230.48 | 281.94 | 322.42 | 378.88 | 414.98 |
ABWY法 | -1397.14 | 625.74 | 183.92 | 239.34 | 289.50 | 334.40 | 408.43 | 461.44 |
Benson法相对偏差 | -0.28 | — | -3.11 | 2.74 | 3.83 | 3.75 | 2.41 | 0.96 |
ABWY法相对偏差 | -5.60 | 1.09 | 9.62 | 6.69 | 6.61 | 7.60 | 10.40 | 12.27 |
(kJ ? mol-1) | (J?mol-1 ? K-1) | Cp=A+BT+CT2+DT3+ET4 /(J ? mol-1 ? K-1) | |||||
---|---|---|---|---|---|---|---|
A | B | 103C | 106D | 109E | r2 | ||
-1296.03 | 624.98 | -369.3370 | 2.8785 | -4.8500 | 4.1384 | -1.3794 | 0.9998 |
表2 MPA的热力学数据
Table 2 Thermodynamic data for MPA
(kJ ? mol-1) | (J?mol-1 ? K-1) | Cp=A+BT+CT2+DT3+ET4 /(J ? mol-1 ? K-1) | |||||
---|---|---|---|---|---|---|---|
A | B | 103C | 106D | 109E | r2 | ||
-1296.03 | 624.98 | -369.3370 | 2.8785 | -4.8500 | 4.1384 | -1.3794 | 0.9998 |
实验序号 | Co/Mn/Br /(mg?kg-1) | k1 /min-1 | k2 /(kg?mol-1?min-1) | k3×103/min-1 | k4×10/ (kg?mol-1?min-1) |
---|---|---|---|---|---|
1 | 200/200/400 | 1.14±0.09 | 0.16±0.01 | 2.50±0.64 | 0.54±0.05 |
2 | 200/400/200 | 1.27±0.10 | 1.09±0.07 | 3.52±0.59 | 2.94±0.31 |
3 | 400/200/200 | 1.23±0.09 | 0.49±0.03 | 3.50±0.82 | 1.41±0.19 |
4 | 200/200/800 | 1.48±0.11 | 0.56±0.04 | 4.64±0.84 | 1.81±0.23 |
表3 反应速率常数和置信水平为95%时对应的置信区间
Table 3 Estimated rate constants and corresponding confidence intervals with the confidence level of 95%
实验序号 | Co/Mn/Br /(mg?kg-1) | k1 /min-1 | k2 /(kg?mol-1?min-1) | k3×103/min-1 | k4×10/ (kg?mol-1?min-1) |
---|---|---|---|---|---|
1 | 200/200/400 | 1.14±0.09 | 0.16±0.01 | 2.50±0.64 | 0.54±0.05 |
2 | 200/400/200 | 1.27±0.10 | 1.09±0.07 | 3.52±0.59 | 2.94±0.31 |
3 | 400/200/200 | 1.23±0.09 | 0.49±0.03 | 3.50±0.82 | 1.41±0.19 |
4 | 200/200/800 | 1.48±0.11 | 0.56±0.04 | 4.64±0.84 | 1.81±0.23 |
反应速率常数 | ln k0 | Ea/(kJ?mol-1) | r2 |
---|---|---|---|
k1 /min-1 | 14.42 | 57.20 | 0.98 |
k2 /(kg?mol-1?min-1) | 28.62 | 120.30 | 0.94 |
k3 /min-1 | 5.77 | 43.45 | 0.94 |
k4 /(kg?mol-1?min-1) | 20.75 | 97.01 | 0.96 |
表4 不同温度下的反应速率常数
Table 4 Reaction rate constants at different temperatures
反应速率常数 | ln k0 | Ea/(kJ?mol-1) | r2 |
---|---|---|---|
k1 /min-1 | 14.42 | 57.20 | 0.98 |
k2 /(kg?mol-1?min-1) | 28.62 | 120.30 | 0.94 |
k3 /min-1 | 5.77 | 43.45 | 0.94 |
k4 /(kg?mol-1?min-1) | 20.75 | 97.01 | 0.96 |
图4 在不同催化剂浓度下,PR氧化反应物、产物和副产物的实验值和计算值的比较(温度:230℃)
Fig.4 Comparison of experimental and calculated values of reactants, products and by-products of PR oxidation under various catalyst concentrations (temperature: 230℃)
1 | Fang X Z, Yang Z, Zhang S, et al. Polyimides derived from mellophanic dianhydride[J]. Macromolecules, 2002, 35(23): 8708-8717. |
2 | Jurgen S, Georg K. Process for producing pyromellitic acid and mellophanic acid: US3350443A[P]. 1967-10-31. |
3 | Smith L I, Carlson E J. Prehnitic acid (benzene-1, 2, 3, 4-tetracarboxylic acid)[J]. Journal of the American Chemical Society, 1939, 61(2): 288-291. |
4 | Gomi S, Takahashi M, Nagai H. Process for the preparation of mellophanic dianhydride: US3607887A[P]. 1969-10-08. |
5 | Takahashi M. A new route to mellophanic dianhydride[J]. Bulletin of the Chemical Society of Japan, 1968, 41: 265-265. |
6 | Horie T, Yoshida K, Hori H, et al. Process for producing aromatic tetracarboxylic acids and anhydrides thereof: US3865871(A)[P]. 1975-02-11. |
7 | 刘宏晓, 孙伟振, 赵玲. TOME环化反应热力学分析及反应动力学研究[J]. 化工学报, 2020, 71(2): 500-506. |
Liu H X, Sun W Z, Zhao L. Thermodynamic analysis and kinetics of cyclization of TOME[J]. CIESC Journal, 2020, 71(2): 500-506. | |
8 | 王琳琳, 陈建云, 梁杰珍, 等. 枞酸与甲醇酯化反应的基团贡献法热力学分析[J]. 化工学报, 2013, 64(6): 1900-1906. |
Wang L L, Chen J Y, Liang J Z, et al. Thermodynamic analysis for esterification of abietic acid with methanol by group-contribution method[J]. CIESC Journal, 2013, 64(6): 1900-1906. | |
9 | 张继龙, 赵志仝, 乔燕, 等. 酯交换制油酸甲酯的基团贡献法热力学分析[J]. 化工学报, 2012, 63(6): 1684-1690. |
Zhang J L, Zhao Z T, Qiao Y, et al. Thermodynamic analysis on preparation of methyl oleate via transesterification by group-contribution method[J]. CIESC Journal, 2012, 63(6): 1684-1690. | |
10 | 刘光启, 马连湘, 刘杰. 化学化工物性数据手册: 无机卷[M]. 北京: 化学工业出版社, 2002. |
Liu G Q, Ma L X, Liu J. Chemical Property Data Book: Inorganic Vol[M]. Beijing: Chemical Industry Press, 2002. | |
11 | 刘光启, 马连湘, 刘杰. 化学化工物性数据手册: 有机卷[M]. 北京: 化学工业出版社, 2002. |
Liu G Q, Ma L X, Liu J. Chemical Property Data Book: Organic Vol[M]. Beijing: Chemical Industry Press, 2002. | |
12 | Yaws C L. Chemical Properties Handbook[M]. New York: McGraw-Hill, 1999. |
13 | Benson S W. Thermochemical Kinetics: Methods for the Estimation of Thermochemical Data and Rate Parameters[M]. New York: Wiley, 1968. |
14 | Yoneda Y. An estimation of the thermodynamic properties of organic compounds in the ideal gas state. I. Acyclic compounds and cyclic compounds with a ring of cyclopentane, cyclohexane, benzene, or naphthalene[J]. Bulletin of the Chemical Society of Japan, 1979, 52(5): 1297-1314. |
15 | Constantinou L, Gani R. New group contribution method for estimating properties of pure compounds[J]. AIChE Journal, 1994, 40(10): 1697-1710. |
16 | Watson K. Thermodynamics of the liquid state[J]. Industrial & Engineering Chemistry, 1943, 35(4): 398-406. |
17 | Jones G H. A mechanistic study of the origin of synergy and antagonism in the Co(OAc)Br-catalyzed autoxidation of p-xylene[J]. J. Chem. Res., 1981, 8: 2137-2163. |
18 | Sheldon R A, Kochi J K. Metal-catalyzed Oxidations of Organic Compounds: Mechanistic Principles and Synthetic Methodology Including Biochemical Processes[M]. New York: Academic Press, 1981. |
19 | Partenheimer W. Characterization of the reaction of cobalt (Ⅱ) acetate, dioxygen and acetic acid, and its significance in autoxidation reactions[J]. Journal of Molecular Catalysis, 1991, 67(1): 35-46. |
20 | Partenheimer W, Gipe R. Nature of the Co-Mn-Br catalyst in the methylaromatic compounds process[M]// Catalytic Selective Oxidation. ACS Symposium Series. Washington, DC: ACS Publications, 1993: 81-88. |
21 | Partenheimer W. Methodology and scope of metal/bromide autoxidation of hydrocarbons[J]. Catalysis Today, 1995, 23(2): 69-158. |
22 | Wang Q, Li X, Wang L, et al. Kinetics of p-xylene liquid-phase catalytic oxidation to terephthalic acid[J]. Industrial & Engineering Chemistry Research, 2005, 44(2): 261-266. |
23 | Sun W Z, Pan Y, Zhao L, et al. Simplified free-radical reaction kinetics for p-xylene oxidation to terephthalic acid[J]. Chemical Engineering & Technology, 2008, 31(10): 1402-1409. |
24 | Wang Q, Zhang Y, Cheng Y, et al. Reaction mechanism and kinetics for the liquid-phase catalytic oxidation of meta-xylene to meta-phthalic acid[J]. AIChE Journal, 2008, 54(10): 2674-2688. |
25 | Tomás R A, Bordado J C, Gomes J F. p-Xylene oxidation to terephthalic acid: a literature review oriented toward process optimization and development[J]. Chemical Reviews, 2013, 113(10): 7421-7469. |
26 | Li M, Niu F H, Busch D H, et al. Kinetic investigations of p-xylene oxidation to terephthalic acid with a Co/Mn/Br catalyst in a homogeneous liquid phase[J]. Industrial & Engineering Chemistry Research, 2014, 53(22): 9017-9026. |
27 | Sun W Z, Sun J H, Xu Z M, et al. Experimental study and modeling of homogenous catalytic oxidation of m-xylene to isophthalic acid[J]. Industrial & Engineering Chemistry Research, 2015, 54(13): 3293-3298. |
28 | Cao G, Pisu M, Morbidelli M. A lumped kinetic model for liquid-phase catalytic oxidation of p-xylene to terephthalic acid[J]. Chemical Engineering Science, 1994, 49(24): 5775-5788. |
29 | 朱开宏. 复杂反应体系的集总动力学模型[J]. 石油化工, 1982, (9): 621-627. |
Zhu K H. Lumped kinetic model of complex reaction system[J]. Petrochemical Technology, 1982, (9): 621-627. | |
30 | Li J, Brill T B. Spectroscopy of hydrothermal reactions 23: the effect of OH substitution on the rates and mechanisms of decarboxylation of benzoic acid[J]. The Journal of Physical Chemistry A, 2003, 107(15): 2667-2673. |
31 | Kaeding W W. Oxidation of aromatic acids. IV. Decarboxylation of salicylic acids[J]. The Journal of Organic Chemistry, 1964, 29(9): 2556-2559. |
32 | Cincotti A, Orrù R, Broi A, et al. Effect of catalyst concentration and simulation of precipitation processes on liquid-phase catalytic oxidation of p-xylene to terephthalic acid[J]. Chemical Engineering Science, 1997, 52(21/22): 4205-4213. |
[1] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[2] | 于宏鑫, 邵双全. 水结晶过程的分子动力学模拟分析[J]. 化工学报, 2023, 74(S1): 250-258. |
[3] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及![]() |
[4] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[5] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[6] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[7] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[8] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[9] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[10] | 曾如宾, 沈中杰, 梁钦锋, 许建良, 代正华, 刘海峰. 基于分子动力学模拟的Fe2O3纳米颗粒烧结机制研究[J]. 化工学报, 2023, 74(8): 3353-3365. |
[11] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[12] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[13] | 何宣志, 何永清, 闻桂叶, 焦凤. 磁液液滴颈部自相似破裂行为[J]. 化工学报, 2023, 74(7): 2889-2897. |
[14] | 李艳辉, 丁邵明, 白周央, 张一楠, 于智红, 邢利梅, 高鹏飞, 王永贞. 非常规服役超临界锅炉的微纳尺度腐蚀动力学模型建立及应用[J]. 化工学报, 2023, 74(6): 2436-2446. |
[15] | 周继鹏, 何文军, 李涛. 异形催化剂上乙烯催化氧化失活动力学反应工程计算[J]. 化工学报, 2023, 74(6): 2416-2426. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 258
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 606
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||