化工学报 ›› 2021, Vol. 72 ›› Issue (7): 3435-3444.DOI: 10.11949/0438-1157.20210070
初广文1(),廖洪钢2,王丹1,李晖3,李洒4,姜红5,金万勤5,陈建峰1
收稿日期:
2021-01-20
修回日期:
2021-03-17
出版日期:
2021-07-05
发布日期:
2021-07-05
通讯作者:
初广文
作者简介:
初广文(1974—),男,博士,教授,基金资助:
CHU Guangwen1(),LIAO Honggang2,WANG Dan1,LI Hui3,LI Sa4,JIANG Hong5,JIN Wanqin5,CHEN Jianfeng1
Received:
2021-01-20
Revised:
2021-03-17
Online:
2021-07-05
Published:
2021-07-05
Contact:
CHU Guangwen
摘要:
阐述了微纳介尺度气液反应过程强化的研究背景,分析了该领域面临的微纳介区域中介质分散机制的关键科学问题及研究思路。以超重力反应器、膜反应器为例,介绍了我国在气液反应过程强化方面的基础研究以及潜在的工业应用,并提出了未来的发展方向。
中图分类号:
初广文,廖洪钢,王丹,李晖,李洒,姜红,金万勤,陈建峰. 微纳介尺度气液反应过程强化[J]. 化工学报, 2021, 72(7): 3435-3444.
CHU Guangwen,LIAO Honggang,WANG Dan,LI Hui,LI Sa,JIANG Hong,JIN Wanqin,CHEN Jianfeng. Gas-liquid reaction process intensification at micro-/nano-mesoscale[J]. CIESC Journal, 2021, 72(7): 3435-3444.
1 | Li J H, Zhang J Y, Ge W, et al. Multi-scale methodology for complex systems[J]. Chemical Engineering Science, 2004, 59(8/9): 1687-1700. |
2 | 李静海, 胡英, 袁权. 探索介尺度科学: 从新角度审视老问题[J]. 中国科学: 化学, 2014, 44(3): 277-281. |
Li J H, Hu Y, Yuan Q. Mesoscience: exploring old problems from a new angle[J]. Scientia Sinica (Chimica), 2014, 44(3): 277-281. | |
3 | Li J H. Approaching virtual process engineering with exploring mesoscience[J]. Chemical Engineering Journal, 2015, 278: 541-555. |
4 | 孙宏伟, 陈建峰. 我国化工过程强化技术理论与应用研究进展[J]. 化工进展, 2011, 30(1): 1-15. |
Sun H W, Chen J F. Advances in fundamental study and application of chemical process intensification technology in China[J]. Chemical Industry and Engineering Progress, 2011, 30(1): 1-15. | |
5 | Zhao H, Shao L, Chen J F. High-gravity process intensification technology and application[J]. Chemical Engineering Journal, 2010, 156(3): 588-593. |
6 | 邢卫红, 汪勇, 陈日志, 等. 膜与膜反应器: 现状、挑战与机遇[J]. 中国科学: 化学, 2014, 44(9): 1469-1481. |
Xing W H, Wang Y, Chen R Z, et al. Membranes and membrane reactors: state of the art, challenges, and opportunities[J]. Scientia Sinica(Chimica), 2014, 44(9): 1469-1481. | |
7 | 徐南平, 高从堦, 金万勤. 中国膜科学技术的创新进展[J]. 中国工程科学, 2014, 16(12): 4-9. |
Xu N P, Gao C J, Jin W Q. Innovations of membrane science and technology in China[J]. Engineering Sciences, 2014, 16(12): 4-9. | |
8 | Guo K, Guo F, Feng Y D, et al. Synchronous visual and RTD study on liquid flow in rotating packed-bed contactor[J]. Chemical Engineering Science, 2000, 55(9): 1699-1706. |
9 | Sang L, Luo Y, Chu G W, et al. Liquid flow pattern transition, droplet diameter and size distribution in the cavity zone of a rotating packed bed: a visual study[J]. Chemical Engineering Science, 2017, 158: 429-438. |
10 | Xu Y C, Li Y B, Liu Y Z, et al. Liquid jet impaction on the single-layer stainless steel wire mesh in a rotating packed bed reactor[J]. AIChE Journal, 2019, 65(6): e16597. |
11 | Wu W, Luo Y, Chu G W, et al. Liquid flow behavior in a multiliquid-inlet rotating packed bed reactor with three-dimensional printed packing[J]. Chemical Engineering Journal, 2020, 386: 121537. |
12 | Shi X, Xiang Y, Wen L X, et al. CFD analysis of liquid phase flow in a rotating packed bed reactor[J]. Chemical Engineering Journal, 2013, 228: 1040-1049. |
13 | Ouyang Y, Zou H K, Gao X Y, et al. Computational fluid dynamics modeling of viscous liquid flow characteristics and end effect in rotating packed bed[J]. Chemical Engineering and Processing: Process Intensification, 2018, 123: 185-194. |
14 | Guo T Y, Shi X, Chu G W, et al. Computational fluid dynamics analysis of the micromixing efficiency in a rotating-packed-bed reactor[J]. Industrial & Engineering Chemistry Research, 2016, 55(17): 4856-4866. |
15 | Liu Y, Wu W, Luo Y, et al. CFD simulation and high-speed photography of liquid flow in the outer cavity zone of a rotating packed bed reactor[J]. Industrial & Engineering Chemistry Research, 2019, 58(13): 5280-5290. |
16 | Li W L, Gao X Y, Ouyang Y, et al. CFD analysis of gas flow characteristics and residence time distribution in a rotating spherical packing bed[J]. Industrial & Engineering Chemistry Research, 2019, 58(47): 21717-21729. |
17 | Wu W, Luo Y, Chu G W, et al. Gas flow in a multiliquid-inlet rotating packed bed: three-dimensional numerical simulation and internal optimization[J]. Industrial & Engineering Chemistry Research, 2018, 57(6): 2031-2040. |
18 | Yang H J, Chu G W, Zhang J W, et al. Micromixing efficiency in a rotating packed bed: experiments and simulation[J]. Industrial & Engineering Chemistry Research, 2005, 44(20): 7730-7737. |
19 | Yang H J, Chu G W, Xiang Y, et al. Characterization of micromixing efficiency in rotating packed beds by chemical methods[J]. Chemical Engineering Journal, 2006, 121(2/3): 147-152. |
20 | Chu G W, Song Y H, Yang H J, et al. Micromixing efficiency of a novel rotor-stator reactor[J]. Chemical Engineering Journal, 2007, 128(2/3): 191-196. |
21 | Guo F, Zheng C, Guo K, et al. Hydrodynamics and mass transfer in cross-flow rotating packed bed[J]. Chemical Engineering Science, 1997, 52(21/22): 3853-3859. |
22 | Luo Y, Chu G W, Zou H K, et al. Mass transfer studies in a rotating packed bed with novel rotors: chemisorption of CO2[J]. Industrial & Engineering Chemistry Research, 2012, 51(26): 9164-9172. |
23 | Yi F, Zou H K, Chu G W, et al. Modeling and experimental studies on absorption of CO2 by Benfield solution in rotating packed bed[J]. Chemical Engineering Journal, 2009, 145(3): 377-384. |
24 | Sang L, Luo Y, Chu G W, et al. Modeling and experimental studies of mass transfer in the cavity zone of a rotating packed bed[J]. Chemical Engineering Science, 2017, 170: 355-364. |
25 | Yang Y C, Xiang Y, Chu G W, et al. CFD modeling of gas-liquid mass transfer process in a rotating packed bed[J]. Chemical Engineering Journal, 2016, 294: 111-121. |
26 | Xie P, Lu X S, Yang X, et al. Characteristics of liquid flow in a rotating packed bed for CO2 capture: a CFD analysis[J]. Chemical Engineering Science, 2017, 172: 216-229. |
27 | Xie P, Lu X S, Ding H B, et al. A mesoscale 3D CFD analysis of the liquid flow in a rotating packed bed[J]. Chemical Engineering Science, 2019, 199: 528-545. |
28 | Chu G W, Song Y J, Zhang W J, et al. Micromixing efficiency enhancement in a rotating packed bed reactor with surface-modified nickel foam packing[J]. Industrial & Engineering Chemistry Research, 2015, 54(5): 1697-1702. |
29 | Zheng X H, Chu G W, Kong D J, et al. Mass transfer intensification in a rotating packed bed with surface-modified nickel foam packing[J]. Chemical Engineering Journal, 2016, 285: 236-242. |
30 | Westermann T, Melin T. Flow-through catalytic membrane reactors—principles and applications[J]. Chemical Engineering and Processing: Process Intensification, 2009, 48(1): 17-28. |
31 | Liao Y X, Lucas D. A literature review on mechanisms and models for the coalescence process of fluid particles[J]. Chemical Engineering Science, 2010, 65(10): 2851-2864. |
32 | Hohl L, Panckow R P, Schulz J M, et al. Description of disperse multiphase processes: quo vadis?[J]. Chemie Ingenieur Technik, 2018, 90(11): 1709-1726. |
33 | Hou M M, Jiang H, Liu Y F, et al. Membrane based gas-liquid dispersion integrated in fixed-bed reactor: a highly efficient technology for heterogeneous catalysis[J]. Industrial & Engineering Chemistry Research, 2018, 57(1): 158-168. |
34 | Zheng C, Tan J, Wang K, et al. Stability and pressure drop of gas-liquid micro-dispersion flows through a capillary[J]. Chemical Engineering Science, 2016, 140: 134-143. |
35 | Dong X L, Jin W Q, Xu N P, et al. Dense ceramic catalytic membranes and membrane reactors for energy and environmental applications[J]. Chemical Communications, 2011, 47(39): 10886-10902. |
36 | Liu Y F, Han Y, Li X L, et al. Efficient control of microbubble properties by alcohol shear flows in ceramic membrane channels[J]. Chemical Engineering & Technology, 2018, 41(1): 168-174. |
37 | Liu Y F, Han Y, Li X L, et al. Controlling microbubbles in alcohol solutions by using a multi-channel ceramic membrane distributor[J]. Journal of Chemical Technology & Biotechnology, 2018, 93(8): 2456-2463. |
38 | Han Y, Liu Y F, Jiang H, et al. Large scale preparation of microbubbles by multi-channel ceramic membranes: Hydrodynamics and mass transfer characteristics[J]. The Canadian Journal of Chemical Engineering, 2017, 95(11): 2176-2185. |
39 | Trushin A M, Dmitriev E A, Akimov V V. Mechanics of the formation of microbubbles in gas dispersion through the pores of microfiltration membranes[J]. Theoretical Foundations of Chemical Engineering, 2011, 45(1): 26-32. |
40 | Li X L, Liu Y F, Jiang H, et al. Computational fluid dynamics simulation of a novel membrane distributor of bubble columns for generating microbubbles[J]. Industrial & Engineering Chemistry Research, 2019, 58(2): 1087-1094. |
41 | Liao H G, Cui L, Whitelam S, et al. Real-time imaging of Pt3Fe nanorod growth in solution[J]. Science, 2012, 336(6084): 1011-1014. |
42 | Liao H G, Niu K Y, Zheng H M. Observation of growth of metal nanoparticles[J]. Chemical Communications, 2013, 49(100): 11720-11727. |
43 | Ewing G E. Ambient thin film water on insulator surfaces[J]. Chemical Reviews, 2006, 106: 1511-1526. |
44 | Li J H, Huang W L, Chen J H, et al. Mesoscience based on the EMMS principle of compromise in competition[J]. Chemical Engineering Journal, 2018, 333: 327-335. |
45 | Carrasco J, Hodgson A, Michaelides A. A molecular perspective of water at metal interfaces[J]. Nature Materials, 2012, 11(8): 667-674. |
46 | Cicero G, Grossman J C, Catellani A, et al. Water at a hydrophilic solid surface probed by ab initio molecular dynamics: inhomogeneous thin layers of dense fluid[J]. Journal of the American Chemical Society, 2005, 127(18): 6830-6835. |
47 | Huang P, Pham T A, Galli G, et al. Alumina(0001)/water interface: structural properties and infrared spectra from first-principles molecular dynamics simulations[J]. The Journal of Physical Chemistry C, 2014, 118(17): 8944-8951. |
48 | Ferri M, Elliott J D, Camellone M F, et al. CuFeO2-water interface under illumination: structural, electronic, and catalytic implications for the hydrogen evolution reaction[J]. ACS Catalysis, 2021, 11(4): 1897-1910. |
49 | Calzolari A, Ruini A, Catellani A. Surface effects on catechol/semiconductor interfaces[J]. The Journal of Physical Chemistry C, 2012, 116(32): 17158-17163. |
50 | Cicero G, Grossman J C, Schwegler E, et al. Water confined in nanotubes and between graphene sheets: a first principle study[J]. Journal of the American Chemical Society, 2008, 130(6): 1871-1878. |
51 | Liao H G, Zherebetskyy D, Xin H, et al. Facet development during platinum nanocube growth[J]. Science, 2014, 345(6199): 916-919. |
52 | Huang J Y, Lo Y C, Niu J J, et al. Nanowire liquid pumps[J]. Nature Nanotechnology, 2013, 8(4): 277-281. |
53 | Guan B Y, Kushima A, Yu L, et al. Coordination polymers derived general synthesis of multishelled mixed metal-oxide particles for hybrid supercapacitors[J]. Advanced Materials, 2017, 29(17): 1605902. |
54 | Yang Y, Kushima A, Han W Z, et al. Liquid-like, self-healing aluminum oxide during deformation at room temperature[J]. Nano Letters, 2018, 18(4): 2492-2497. |
55 | Pu Y, Kang F, Zeng X F, et al. Synthesis of transparent oil dispersion of monodispersed calcium carbonate nanoparticles with high concentration[J]. AIChE Journal, 2017, 63(9): 3663-3669. |
56 | Pu Y, Cai F H, Wang D, et al. Colloidal synthesis of semiconductor quantum dots toward large-scale production: a review[J]. Industrial & Engineering Chemistry Research, 2018, 57(6): 1790-1802. |
57 | Xia Y, Zhang C, Wang J X, et al. Synthesis of transparent aqueous ZrO2 nanodispersion with a controllable crystalline phase without modification for a high-refractive-index nanocomposite film[J]. Langmuir, 2018, 34(23): 6806-6813. |
58 | Li H, Zeng X C. Wetting and interfacial properties of water nanodroplets in contact with graphene and monolayer boron-nitride sheets[J]. ACS Nano, 2012, 6(3): 2401-2409. |
59 | Zhu C, Li H, Huang Y, et al. Microscopic insight into surface wetting: relations between interfacial water structure and the underlying lattice constant[J]. Physical Review Letters, 2013, 110(12): 126101. |
60 | Nair R R, Wu H A, Jayaram P N, et al. Unimpeded permeation of water through helium-leak-tight graphene-based membranes[J]. Science, 2012, 335(6067): 442-444. |
61 | Zhang X, Zhou W, Xu F, et al. Resistance of water transport in carbon nanotube membranes[J]. Nanoscale, 2018, 10(27): 13242-13249. |
62 | Zhang J P, Luo Y, Chu G W, et al. A hydrophobic wire mesh for better liquid dispersion in air[J]. Chemical Engineering Science, 2017, 170: 204-212. |
63 | Su M J, Le Y, Chu G W, et al. Intensification of droplet dispersion by using multilayer wire mesh and its application in a rotating packed bed[J]. Industrial & Engineering Chemistry Research, 2020, 59(8): 3584-3592. |
64 | 陈建峰, 初广文, 邹海魁, 等. 一种低压降纳微结构化填料旋转床超重力装置及应用: 102120172B[P]. 2012-10-17. |
Chen J F, Chu G W, Zou H K, et al. Low-pressure-drop nano/microstructure filler revolving bed supergravity device and application thereof: 102120172B[P]. 2012-10-17. | |
65 | 陈建峰, 罗勇, 初广文, 等. 一种分段进液强化转子端效应的超重力旋转床装置: 102258880B[P]. 2013-05-29. |
Chen J F, Luo Y, Chu G W, et al. A high gravity rotating bed device with segment-fed liquid to strengthen rotor end effect: 102258880B[P]. 2013-05-29. | |
66 | Li X L, Jiang H, Hou M M, et al. Enhanced phenol hydrogenation for cyclohexanone production by membrane dispersion[J]. Chemical Engineering Journal, 2020, 386: 120744. |
67 | Chen R Z, Mao H L, Zhang X R, et al. A dual-membrane airlift reactor for cyclohexanone ammoximation over titanium silicalite-1[J]. Industrial & Engineering Chemistry Research, 2014, 53(15): 6372-6379. |
68 | Chen R Z, Bao Y H, Xing W H, et al. Enhanced phenol hydroxylation with oxygen using a ceramic membrane distributor[J]. Chinese Journal of Catalysis, 2013, 34(1): 200-208. |
69 | 陈日志, 姜红, 刘宇程, 等. 一种苯酚液相加氢制环己酮的生产工艺: 109180455A[P]. 2019-01-11. |
Chen R Z, Jiang H, Liu Y C, et al. Production technology for preparing cyclohexanone by liquid phase hydrogenation of phenol: 109180455A[P]. 2019-01-11. | |
70 | 陈日志, 侯苗苗, 姜红, 等. 一种甘油氢解制1,2-丙二醇的生产工艺: 107628929B[P]. 2018-01-26. |
Chen R Z, Hou M M, Jiang H, et al. Process for producing1, 2-propanediol through hydrogenolysis of glycerol: 107628929B[P]. 2018-01-26. | |
71 | 邢卫红, 毛红淋, 陈日志, 等. 一种基于膜分布的无溶剂绿色氨肟化工艺: 104860842B[P]. 2015-08-26. |
Xing W H, Mao H L, Chen R Z, et al. Solvent-free green ammoximation technology based on film distribution: 104860842B[P]. 2015-08-26. | |
72 | 徐南平, 金万勤, 李朝辉, 等. 一种管式膜反应器: 101574636B[P]. 2009-11-11. |
Xu N P, Jin W Q, Li C H, et al. Tubular membrane reactor: 101574636B[P]. 2009-11-11. |
[1] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[2] | 吴延鹏, 李晓宇, 钟乔洋. 静电纺丝纳米纤维双疏膜油性细颗粒物过滤性能实验分析[J]. 化工学报, 2023, 74(S1): 259-264. |
[3] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[4] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[5] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[6] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[7] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[8] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[9] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
[10] | 韩奎奎, 谭湘龙, 李金芝, 杨婷, 张春, 张永汾, 刘洪全, 于中伟, 顾学红. 四通道中空纤维MFI分子筛膜用于二甲苯异构体分离[J]. 化工学报, 2023, 74(6): 2468-2476. |
[11] | 蔡斌, 张效林, 罗倩, 党江涛, 左栗源, 刘欣梅. 导电薄膜材料的研究进展[J]. 化工学报, 2023, 74(6): 2308-2321. |
[12] | 陈朝光, 贾玉香, 汪锰. 以低浓度废酸驱动中和渗析脱盐的模拟与验证[J]. 化工学报, 2023, 74(6): 2486-2494. |
[13] | 顾浩, 张福建, 刘珍, 周文轩, 张鹏, 张忠强. 力电耦合作用下多孔石墨烯膜时间维度的脱盐性能及机理研究[J]. 化工学报, 2023, 74(5): 2067-2074. |
[14] | 袁子涵, 王淑彦, 邵宝力, 谢磊, 陈曦, 马一玫. 基于幂律液固曳力模型流化床内湿颗粒流动特性的研究[J]. 化工学报, 2023, 74(5): 2000-2012. |
[15] | 孙永尧, 高秋英, 曾文广, 王佳铭, 陈艺飞, 周永哲, 贺高红, 阮雪华. 面向含氮油田伴生气提质利用的膜耦合分离工艺设计优化[J]. 化工学报, 2023, 74(5): 2034-2045. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||