化工学报 ›› 2021, Vol. 72 ›› Issue (7): 3478-3487.DOI: 10.11949/0438-1157.20210253
王志1(),李彦卿2,庄伟3,陈震4,刘金乐5,柳东3,赵安琪2,吕永坤1,熊文龙1,许敬亮1,应汉杰3()
收稿日期:
2021-02-19
修回日期:
2021-04-26
出版日期:
2021-07-05
发布日期:
2021-07-05
通讯作者:
应汉杰
作者简介:
王志(1992—),男,博士,讲师,基金资助:
WANG Zhi1(),LI Yanqing2,ZHUANG Wei3,CHEN Zhen4,LIU Jinle5,LIU Dong3,ZHAO Anqi2,LYU Yongkun1,XIONG Wenlong1,XU Jingliang1,YING Hanjie3()
Received:
2021-02-19
Revised:
2021-04-26
Online:
2021-07-05
Published:
2021-07-05
Contact:
YING Hanjie
摘要:
多糖微量元素络合物作为一类优质的有机微量元素, 因其不仅能发挥多糖的优异生物学功能,而且能显著提高微量元素利用率,减少环境污染等,备受国内外研究者关注。综述了植物、藻类和微生物多糖与硒、锌、铁等微量元素络合物的最新研究进展,强调了多糖分子结构对络合工艺条件的影响及多糖微量元素络合物在饲料工业的应用潜力,并讨论其当前面临的技术难题和解决方案,旨在从生化工程的角度为多糖微量元素络合物的生产提供指导,促进绿色农业种植与绿色畜牧养殖的融合发展。
中图分类号:
王志, 李彦卿, 庄伟, 陈震, 刘金乐, 柳东, 赵安琪, 吕永坤, 熊文龙, 许敬亮, 应汉杰. 多糖微量元素络合物的饲料化应用研究进展[J]. 化工学报, 2021, 72(7): 3478-3487.
WANG Zhi, LI Yanqing, ZHUANG Wei, CHEN Zhen, LIU Jinle, LIU Dong, ZHAO Anqi, LYU Yongkun, XIONG Wenlong, XU Jingliang, YING Hanjie. Research advances in feed application of polysaccharide trace element complexes[J]. CIESC Journal, 2021, 72(7): 3478-3487.
种类 | 定义 | 实例 |
---|---|---|
特定氨基酸金属络合物 | 由可溶性金属盐与一种特定氨基酸形成的氨基酸金属络合物 | 甘氨酸锌络合物[ |
氨基酸金属络合物 | 由可溶性金属盐与某种或几种氨基酸形成的金属氨基酸络合物 | 复合氨基酸金属络合物[ |
氨基酸金属螯合物 | 由可溶性金属盐与氨基酸按1∶1~1∶3比例以共价键结合而成的氨基酸金属螯合物 | 赖氨酸/谷氨酸铜螯合物[ |
蛋白质金属螯合物 | 由可溶性金属盐与部分水解的蛋白质螯合而成的金属蛋白盐 | 铜螯合肽[ |
多糖金属络合物 | 由可溶性金属盐与多糖溶液形成的多糖金属络合物 | 多糖硒络合物[ |
表1 有机微量元素分类
Table 1 Classification of organic trace elements
种类 | 定义 | 实例 |
---|---|---|
特定氨基酸金属络合物 | 由可溶性金属盐与一种特定氨基酸形成的氨基酸金属络合物 | 甘氨酸锌络合物[ |
氨基酸金属络合物 | 由可溶性金属盐与某种或几种氨基酸形成的金属氨基酸络合物 | 复合氨基酸金属络合物[ |
氨基酸金属螯合物 | 由可溶性金属盐与氨基酸按1∶1~1∶3比例以共价键结合而成的氨基酸金属螯合物 | 赖氨酸/谷氨酸铜螯合物[ |
蛋白质金属螯合物 | 由可溶性金属盐与部分水解的蛋白质螯合而成的金属蛋白盐 | 铜螯合肽[ |
多糖金属络合物 | 由可溶性金属盐与多糖溶液形成的多糖金属络合物 | 多糖硒络合物[ |
微量元素 | 多糖来源 | 微量元素来源 | 络合反应条件 | 微量元素含量/(mg/g) | 文献 |
---|---|---|---|---|---|
铁 | 黄芪 (Astragalus membranaceus) | FeCl3 | 温度:89.46℃; pH:8.16; 时间:0.77 h | 193.2 | [ |
茶 (Camellia sinensis L.) | 温度:60℃; pH:-; 时间:3 h | 146 | [ | ||
大丽花块茎(dahlia tubers) | 温度:25℃; pH:-; 时间:24 h | 175 | [ | ||
北沙参 (Glehniae Radix) | 温度:38℃; pH:9; 时间:3 h | 156.1 | [ | ||
米糠 (rice bran) | 温度:70℃; pH:8~8.5; 时间:至少2 h | 129 | [ | ||
黄豆 (soybean) | 温度:69.8℃; pH:8.89; 时间:- | 306.5 | [ | ||
硒 | 白沙蒿 (Artemisia sphaerocephala Krasch) | H2SeO3 | 温度:70℃; pH:7~8; 时间:6 h | 1.703 | [ |
甘草 (Glycyrrhiza uralensis) | Na2SeO3 | 温度:70℃; pH:5~6; 时间:8 h | 1.339 | [ | |
当归 (angelica) | Na2SeO3 | 温度:70℃; pH:5~6; 时间:8 h | 12.98 | [ | |
锌 | 夏枯草 (Prunella vulgaris) | (CH3COO)2Zn | 温度:40℃; pH:8; 时间:24 h | 27 | [ |
米糠 (rice bran) | ZnSO4 | 温度:70℃; pH:8~8.5; 时间:至少2 h | 4.05 | [ | |
铬 | 苦瓜 (Momordica charantia L.) | CrCl3 | 温度:70℃; pH:8~9; 时间:1 h | 146.8 | [ |
铜 | 米糠 (rice bran) | CuCl2 | 温度:70℃; pH:8~8.5; 时间:至少2 h | 122 | [ |
表2 植物多糖与微量元素的络合
Table 2 Summary of the plant polysaccharide and trace element complexes
微量元素 | 多糖来源 | 微量元素来源 | 络合反应条件 | 微量元素含量/(mg/g) | 文献 |
---|---|---|---|---|---|
铁 | 黄芪 (Astragalus membranaceus) | FeCl3 | 温度:89.46℃; pH:8.16; 时间:0.77 h | 193.2 | [ |
茶 (Camellia sinensis L.) | 温度:60℃; pH:-; 时间:3 h | 146 | [ | ||
大丽花块茎(dahlia tubers) | 温度:25℃; pH:-; 时间:24 h | 175 | [ | ||
北沙参 (Glehniae Radix) | 温度:38℃; pH:9; 时间:3 h | 156.1 | [ | ||
米糠 (rice bran) | 温度:70℃; pH:8~8.5; 时间:至少2 h | 129 | [ | ||
黄豆 (soybean) | 温度:69.8℃; pH:8.89; 时间:- | 306.5 | [ | ||
硒 | 白沙蒿 (Artemisia sphaerocephala Krasch) | H2SeO3 | 温度:70℃; pH:7~8; 时间:6 h | 1.703 | [ |
甘草 (Glycyrrhiza uralensis) | Na2SeO3 | 温度:70℃; pH:5~6; 时间:8 h | 1.339 | [ | |
当归 (angelica) | Na2SeO3 | 温度:70℃; pH:5~6; 时间:8 h | 12.98 | [ | |
锌 | 夏枯草 (Prunella vulgaris) | (CH3COO)2Zn | 温度:40℃; pH:8; 时间:24 h | 27 | [ |
米糠 (rice bran) | ZnSO4 | 温度:70℃; pH:8~8.5; 时间:至少2 h | 4.05 | [ | |
铬 | 苦瓜 (Momordica charantia L.) | CrCl3 | 温度:70℃; pH:8~9; 时间:1 h | 146.8 | [ |
铜 | 米糠 (rice bran) | CuCl2 | 温度:70℃; pH:8~8.5; 时间:至少2 h | 122 | [ |
微量元素 | 多糖来源 | 微量元素来源 | 络合方式 | 微量元素含量/(mg/g) | 文献 |
---|---|---|---|---|---|
硒 | 乳酸菌(Lactococcus lactis subsp. lactis) | SeCl2O | 体外 | 0.17 | [ |
根瘤菌(Rhizobium sp. N613) | H2SeO3 | 体外 | 0.79 | [ | |
粒毛盘菌(Lachnum sp.) | Na2SeO3 | 体外 | 3.6 | [ | |
芽孢杆菌(Bacillus Paralicheniformis SR14) | Na2SeO3 | 体内 | 3.6 | [ | |
猴头菇(Hericium erinaceum) | Selol | 体内 | 4.89 | [ | |
锌 | 滑菇(Pholiota nameko SW-O2) | ZnSO4 | 体内 | 16.68 | [ |
铁 | 肠杆菌(Enterobacter sp. Mediated) | FeC | 体内 | 431 | [ |
桦褐孔菌(Inonotus obliquus) | FeCl3 | 体外 | 194 | [ | |
金针菇(Flammulina velutipes) | FeCl3 | 体外 | 117 | [ | |
铜 | 出芽短梗霉菌(Aureobasidium pullulans) | CuCl2 | 体外 | — | [ |
表3 微生物多糖与微量元素的络合
Table 3 Summary of the microbial polysaccharide and trace element complexes
微量元素 | 多糖来源 | 微量元素来源 | 络合方式 | 微量元素含量/(mg/g) | 文献 |
---|---|---|---|---|---|
硒 | 乳酸菌(Lactococcus lactis subsp. lactis) | SeCl2O | 体外 | 0.17 | [ |
根瘤菌(Rhizobium sp. N613) | H2SeO3 | 体外 | 0.79 | [ | |
粒毛盘菌(Lachnum sp.) | Na2SeO3 | 体外 | 3.6 | [ | |
芽孢杆菌(Bacillus Paralicheniformis SR14) | Na2SeO3 | 体内 | 3.6 | [ | |
猴头菇(Hericium erinaceum) | Selol | 体内 | 4.89 | [ | |
锌 | 滑菇(Pholiota nameko SW-O2) | ZnSO4 | 体内 | 16.68 | [ |
铁 | 肠杆菌(Enterobacter sp. Mediated) | FeC | 体内 | 431 | [ |
桦褐孔菌(Inonotus obliquus) | FeCl3 | 体外 | 194 | [ | |
金针菇(Flammulina velutipes) | FeCl3 | 体外 | 117 | [ | |
铜 | 出芽短梗霉菌(Aureobasidium pullulans) | CuCl2 | 体外 | — | [ |
1 | Mohammadifard N, Humphries K H, Gotay C, et al. Trace minerals intake: risks and benefits for cardiovascular health[J]. Critical Reviews in Food Science and Nutrition, 2019, 59(8): 1334-1346. |
2 | Carpenè E, Andreani G, Isani G. Trace elements in unconventional animals: a 40-year experience[J]. Journal of Trace Elements in Medicine and Biology, 2017, 43: 169-179. |
3 | Papp L V, Lu J, Holmgren A, et al. From selenium to selenoproteins: synthesis, identity, and their role in human health[J]. Antioxidants & Redox Signaling, 2007, 9(7): 775-806. |
4 | López-Alonso M. Trace minerals and livestock: not too much not too little[J]. ISRN Vet. Sci., 2012, 2012: 704825. |
5 | Yan J K, Qiu W Y, Wang Y Y, et al. Fabrication and stabilization of biocompatible selenium nanoparticles by carboxylic curdlans with various molecular properties[J]. Carbohydrate Polymers, 2018, 179: 19-27. |
6 | Baran E J. Trace elements supplementation: recent advances and perspectives[J]. Mini Reviews in Medicinal Chemistry, 2004, 4(1): 1-9. |
7 | Zhao J M, Shirley R B, Dibner J J, et al. Superior growth performance in broiler chicks fed chelated compared to inorganic zinc in presence of elevated dietary copper[J]. Journal of Animal Science and Biotechnology, 2016, 7(1): 1-9. |
8 | Low B W, Hirshfeld F L, Richards F M. Glycinate complexes of zinc and cadmium[J]. Journal of the American Chemical Society, 1959, 81(16): 4412-4416. |
9 | Yu B, Huang W J, Chiou P W S. Bioavailability of iron from amino acid complex in weanling pigs[J]. Animal Feed Science and Technology, 2000, 86(1/2): 39-52. |
10 | Gawargious Y A, Besada A, Hassouna M E M. Micro determination of α-amino-acids through chelation with copper and titration with EDTA[J]. Microchimica Acta, 1974, 62(1): 45-50. |
11 | Liao P, Shu X G, Tang M, et al. Effect of dietary copper source (inorganic vs. chelated) on immune response, mineral status, and fecal mineral excretion in nursery piglets[J]. Food and Agricultural Immunology, 2018, 29(1): 548-563. |
12 | Megías C, Pedroche J, Yust M M, et al. Production of copper-chelating peptides after hydrolysis of sunflower proteins with pepsin and pancreatin[J]. LWT - Food Science and Technology, 2008, 41(10): 1973-1977. |
13 | Lu Q, Xu L, Meng Y B, et al. Preparation and characterization of a novel Astragalus membranaceus polysaccharide-iron (Ⅲ) complex[J]. International Journal of Biological Macromolecules, 2016, 93: 208-216. |
14 | Pino F, Urrutia N L, Gelsinger S L, et al. Long-term effect of organic trace minerals on growth, reproductive performance, and first lactation in dairy heifers[J]. The Professional Animal Scientist, 2018, 34(1): 51-58. |
15 | Lu L, Liao X D, Luo X G. Nutritional strategies for reducing nitrogen, phosphorus and trace mineral excretions of livestock and poultry[J]. Journal of Integrative Agriculture, 2017, 16(12): 2815-2833. |
16 | Gelsinger S L, Pino F, Jones C M, et al. Effects of a dietary organic mineral program including mannan oligosaccharides for pregnant cattle and their calves on calf health and performance[J]. The Professional Animal Scientist, 2016, 32(2): 205-213. |
17 | Okutni K. Antitumor and immunostimulant activities of polysaccharide produced by a marine bacterium of the genus Vibrio[J]. Nippon Suisan Gakkaishi, 1984, 50(6): 1035-1037. |
18 | Raveendran S, Poulose A C, Yoshida Y, et al. Bacterial exopolysaccharide based nanoparticles for sustained drug delivery, cancer chemotherapy and bioimaging[J]. Carbohydrate Polymers, 2013, 91(1): 22-32. |
19 | Sun M L, Liu S B, Qiao L P, et al. A novel exopolysaccharide from deep-sea bacterium Zunongwangia profunda SM-A87: low-cost fermentation, moisture retention, and antioxidant activities[J]. Applied Microbiology and Biotechnology, 2014, 98(17): 7437-7445. |
20 | López E, Ramos I, Sanromán M A. Extracellular polysaccharides production by Arthrobacter viscosus[J]. Journal of Food Engineering, 2003, 60(4): 463-467. |
21 | Li J, Shen B X, Nie S L, et al. A combination of selenium and polysaccharides: promising therapeutic potential[J]. Carbohydrate Polymers, 2019, 206: 163-173. |
22 | Andrieu S. Is there a role for organic trace element supplements in transition cow health?[J]. The Veterinary Journal, 2008, 176(1): 77-83. |
23 | Truccolo M M. Swine supplementation with zinc and copper : a review about organic minerals as a solution for environmental contamination[C]//47th Croatian and 7th International Symposium on Argiculture. Opatija, Croatia, 2012: 741-744. |
24 | Wang X H, Du Y M, Fan L H, et al. Chitosan-metal complexes as antimicrobial agent: synthesis, characterization and structure-activity study[J]. Polymer Bulletin, 2005, 55(1/2): 105-113. |
25 | Zhang Y S, Zhang Z M, Liu H, et al. Physicochemical characterization and antitumor activity in vitro of a selenium polysaccharide from Pleurotus ostreatus[J]. International Journal of Biological Macromolecules, 2020, 165: 2934-2946. |
26 | Sheng Y, Liu G C, Wang M L, et al. A selenium polysaccharide from Platycodon grandiflorum rescues PC12 cell death caused by H2O2via inhibiting oxidative stress[J]. International Journal of Biological Macromolecules, 2017, 104: 393-399. |
27 | Liu L, Pan D D, Zeng X Q, et al. Effect of selenium-enriched exopolysaccharide produced by Lactococcus lactis subsp. lactis on signaling molecules in mouse spleen lymphocytes[J]. Food & Function, 2013, 4(10): 1489-1495. |
28 | Krzesłowska M. The cell wall in plant cell response to trace metals: polysaccharide remodeling and its role in defense strategy[J]. Acta Physiologiae Plantarum, 2011, 33(1): 35-51. |
29 | Zhou N, Long H R, Wang C H, et al. Characterization of selenium-containing polysaccharide from Spirulina platensis and its protective role against Cd-induced toxicity[J]. International Journal of Biological Macromolecules, 2020, 164: 2465-2476. |
30 | Zhu Z Y, Liu F, Gao H, et al. Synthesis, characterization and antioxidant activity of selenium polysaccharide from Cordyceps militaris[J]. International Journal of Biological Macromolecules, 2016, 93: 1090-1099. |
31 | Yang W J, Huang G L, Huang H L. Preparation and structure of polysaccharide selenide[J]. Industrial Crops and Products, 2020, 154: 112630. |
32 | Surai P. Strategies to enhance antioxidant protection and implications for the wellbeing of companion animals[M]//Lyons T P, Jacques K A. Nutritional Biotechnology in the Feed and Food Industries. UK: Nottingham University Press, 2002. |
33 | Bakshi P S, Selvakumar D, Kadirvelu K, et al. Chitosan as an environment friendly biomaterial - a review on recent modifications and applications[J]. International Journal of Biological Macromolecules, 2020, 150: 1072-1083. |
34 | Wang X H, Du Y M, Liu H. Preparation, characterization and antimicrobial activity of chitosan-Zn complex[J]. Carbohydrate Polymers, 2004, 56(1): 21-26. |
35 | Vieira R S, Oliveira M L M, Guibal E, et al. Copper, mercury and chromium adsorption on natural and crosslinked chitosan films: an XPS investigation of mechanism[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 374(1/2/3): 108-114. |
36 | Xu X, Shan B, Liao C H, et al. Anti-diabetic properties of Momordica charantia L. polysaccharide in alloxan-induced diabetic mice[J]. International Journal of Biological Macromolecules, 2015, 81: 538-543. |
37 | Jiao R, Liu Y, Gao H, et al. The anti-oxidant and antitumor properties of plant polysaccharides[J]. The American Journal of Chinese Medicine, 2016, 44(3): 463-488. |
38 | Li L L, Yin F G, Zhang B, et al. Dietary supplementation with Atractylodes macrophala Koidz polysaccharides ameliorate metabolic status and improve immune function in early-weaned pigs[J]. Livestock Science, 2011, 142(1/2/3): 33-41. |
39 | Chen Q H, Liu Z Y, He J H, et al. Achyranthes bidentata polysaccharide enhances growth performance and health status in weaned piglets[J]. Food and Agricultural Immunology, 2011, 22(1): 17-29. |
40 | Tang M M, Wang D F, Hou Y F, et al. Preparation, characterization, bioavailability in vitro and in vivo of tea polysaccharides-iron complex[J]. European Food Research and Technology, 2013, 236(2): 341-350. |
41 | Pitarresi G, Tripodo G, Cavallaro G, et al. Inulin-iron complexes: a potential treatment of iron deficiency anaemia[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 68(2): 267-276. |
42 | Jing Y S, Zhang R J, Wu L F, et al. Structural characteristics and antioxidant activity of polysaccharide-iron complex from Glehniae Radix[J]. International Journal of Food Properties, 2020, 23(1): 894-907. |
43 | Pan X H, Wu S H, Yan Y J, et al. Rice bran polysaccharide-metal complexes showed safe antioxidant activity in vitro[J]. International Journal of Biological Macromolecules, 2019, 126: 934-940. |
44 | Gao W H, Jiang L Y, Wan Z Z, et al. Antibacterial and probiotic promotion potential of a new soluble soybean polysaccharide‑iron(Ⅲ) complex[J]. International Journal of Biological Macromolecules, 2020, 163: 2306-2313. |
45 | Wang J L, Zhao B T, Wang X F, et al. Synthesis of selenium-containing polysaccharides and evaluation of antioxidant activity in vitro[J]. International Journal of Biological Macromolecules, 2012, 51(5): 987-991. |
46 | Lian K X, Zhu X Q, Chen J, et al. Selenylation modification: enhancement of the antioxidant activity of a Glycyrrhiza uralensis polysaccharide[J]. Glycoconjugate Journal, 2018, 35(2): 243-253. |
47 | Qin T, Chen J, Wang D Y, et al. Optimization of selenylation conditions for Chinese angelica polysaccharide based on immune-enhancing activity[J]. Carbohydrate Polymers, 2013, 92(1): 645-650. |
48 | Li C, Huang Q, Xiao J, et al. Preparation of Prunella vulgaris polysaccharide-zinc complex and its antiproliferative activity in HepG2 cells[J]. International Journal of Biological Macromolecules, 2016, 91: 671-679. |
49 | Zhang C, Huang M, Hong R, et al. Preparation of a Momordica charantia L. polysaccharide‑chromium (Ⅲ) complex and its anti-hyperglycemic activity in mice with streptozotocin-induced diabetes[J]. International Journal of Biological Macromolecules, 2019, 122: 619-627. |
50 | Yang Y, Ji J, Di L Q, et al. Resource, chemical structure and activity of natural polysaccharides against alcoholic liver damages[J]. Carbohydrate Polymers, 2020, 241: 116355. |
51 | Mohamed S, Hashim S N, Rahman H A. Seaweeds: a sustainable functional food for complementary and alternative therapy[J]. Trends in Food Science & Technology, 2012, 23(2): 83-96. |
52 | Zhuang C, Itoh H, Mizuno T, et al. Antitumor active fucoidan from the brown seaweed, umitoranoo (Sargassum thunbergii)[J]. Bioscience, Biotechnology, and Biochemistry, 1995, 59(4): 563-567. |
53 | Fabregas J, Garcı́a D, Fernandez-Alonso M, et al. In vitro inhibition of the replication of haemorrhagic septicaemia virus (VHSV) and African swine fever virus (ASFV) by extracts from marine microalgae[J]. Antiviral Research, 1999, 44(1): 67-73. |
54 | Rao P S, Parekh K S. Antibacterial activity of Indian seaweed extracts[J]. Botanica Marina, 1981, 24(11): 577-582. |
55 | Chotigeat W, Tongsupa S, Supamataya K, et al. Effect of fucoidan on disease resistance of black tiger shrimp[J]. Aquaculture, 2004, 233(1/2/3/4): 23-30. |
56 | Lü H, Gao Y J, Shan H, et al. Preparation and antibacterial activity studies of degraded polysaccharide selenide from Enteromorpha prolifera[J]. Carbohydrate Polymers, 2014, 107: 98-102. |
57 | 单俊伟, 台文静, 王海华, 等. 一种海藻多糖铜络合物的制备方法: 106496347A[P]. 2017-03-15. |
Shan J W, Tai W J, Wang H H, et al. Preparation method of seaweed polysaccharide copper complex: 106496347A[P]. 2017-03-15. | |
58 | Wang J, Chen H X, Wang Y W, et al. Synthesis and characterization of a new Inonotus obliquus polysaccharide-iron(Ⅲ) complex[J]. International Journal of Biological Macromolecules, 2015, 75: 210-217. |
59 | Shen W Z, Wang H, Guo G Q, et al. Immunomodulatory effects of Caulerpa racemosa var peltata polysaccharide and its selenizing product on T lymphocytes and NK cells in mice[J]. Science in China Series C: Life Sciences, 2008, 51(9): 795-801. |
60 | Guo Y X, Pan D D, Li H, et al. Antioxidant and immunomodulatory activity of selenium exopolysaccharide produced by Lactococcus lactis subsp. lactis[J]. Food Chemistry, 2013, 138(1): 84-89. |
61 | Ding G B, Nie R H, Lv L H, et al. Preparation and biological evaluation of a novel selenium-containing exopolysaccharide from Rhizobium sp. N613[J]. Carbohydrate Polymers, 2014, 109: 28-34. |
62 | Surhio M M, Wang Y F, Xu P, et al. Antihyperlipidemic and hepatoprotective properties of selenium modified polysaccharide from Lachnum sp.[J]. International Journal of Biological Macromolecules, 2017, 99: 88-95. |
63 | Cheng Y Z, Xiao X, Li X X, et al. Characterization, antioxidant property and cytoprotection of exopolysaccharide-capped elemental selenium particles synthesized by Bacillus paralicheniformis SR14[J]. Carbohydrate Polymers, 2017, 178: 18-26. |
64 | Malinowska E, Krzyczkowski W, Herold F, et al. Biosynthesis of selenium-containing polysaccharides with antioxidant activity in liquid culture of Hericium erinaceum[J]. Enzyme and Microbial Technology, 2009, 44(5): 334-343. |
65 | Zheng L, Zhai G Y, Zhang J J, et al. Antihyperlipidemic and hepatoprotective activities of mycelia zinc polysaccharide from Pholiota nameko SW-02[J]. International Journal of Biological Macromolecules, 2014, 70: 523-529. |
66 | Kianpour S, Ebrahiminezhad A, Heidari R, et al. Enterobacter sp. mediated synthesis of biocompatible nanostructured iron-polysaccharide complexes: a nutritional supplement for iron-deficiency anemia[J]. Biological Trace Element Research, 2020, 198(2): 744-755. |
67 | Cheng C, Huang D C, Zhao L Y, et al. Preparation and in vitro absorption studies of a novel polysaccharide‑iron (Ⅲ) complex from Flammulina velutipes[J]. International Journal of Biological Macromolecules, 2019, 132: 801-810. |
68 | Mitić Ž, Nikolić G S, Cakić M, et al. FTIR spectroscopic characterization of Cu(Ⅱ) coordination compounds with exopolysaccharide pullulan and its derivatives[J]. Journal of Molecular Structure, 2009, 924/925/926: 264-273. |
69 | Jin M L, Lu Z Q, Huang M, et al. Effects of Se-enriched polysaccharides produced by Enterobacter cloacae Z0206 on alloxan-induced diabetic mice[J]. International Journal of Biological Macromolecules, 2012, 50(2): 348-352. |
70 | Zhang B W, Zhou K, Zhang J L, et al. Accumulation and species distribution of selenium in Se-enriched bacterial cells of the Bifidobacterium animalis 01[J]. Food Chemistry, 2009, 115(2): 727-734. |
71 | Kumar A S, Mody K, Jha B. Bacterial exopolysaccharides: a perception[J]. Journal of Basic Microbiology, 2007, 47(2): 103-117. |
72 | Chen L, Huang G L. The antiviral activity of polysaccharides and their derivatives[J]. International Journal of Biological Macromolecules, 2018, 115: 77-82. |
73 | Xu C L, Wang Y Z, Jin M L, et al. Preparation, characterization and immunomodulatory activity of selenium-enriched exopolysaccharide produced by bacterium Enterobacter cloacae Z0206[J]. Bioresource Technology, 2009, 100(6): 2095-2097. |
74 | Xu L, Meng Y B, Liu Y, et al. A novel iron supplements preparation from Grifola frondosa polysaccharide and assessment of antioxidant, lymphocyte proliferation and complement fixing activities[J]. International Journal of Biological Macromolecules, 2018, 108: 1148-1157. |
75 | Shang D, Li Y, Wang C, et al. A novel polysaccharide from Se-enriched Ganoderma lucidum induces apoptosis of human breast cancer cells[J]. Oncology Reports, 2011, 25(1): 267-272. |
76 | Drouin P, Tremblay J, Chaucheyras-Durand F. Dynamic succession of microbiota during ensiling of whole plant corn following inoculation with Lactobacillus buchneri and Lactobacillus hilgardii alone or in combination[J]. Microorganisms, 2019, 7(12): E595. |
77 | Ma Y F, Huang Q C, Lv M, et al. Chitosan-Zn chelate increases antioxidant enzyme activity and improves immune function in weaned piglets[J]. Biological Trace Element Research, 2014, 158(1): 45-50. |
78 | Banadaky M D, Rajaei-Sharifabadi H, Hafizi M, et al. Lactation responses of Holstein dairy cows to supplementation with a combination of trace minerals produced using the advanced chelate compounds technology[J]. Tropical Animal Health and Production, 2021, 53(1): 1-9. |
79 | Seyfori H, Ghasemi H A, Hajkhodadadi I, et al. Effects of water supplementation of anorganic acid-trace mineral complex on production and slaughter parameters, intestinal histomorphology, and macronutrient digestibility in growing ostriches[J]. Poultry Science, 2019, 98(10): 4860-4867. |
80 | Harvey K M, Cooke R F, Colombo E A, et al. Supplementing organic-complexed or inorganic Co, Cu, Mn, and Zn to beef cows during gestation: post-weaning responses of offspring reared as replacement heifers or feeder cattle[J]. Journal of Animal Science, 2021, 99(6): skab082. |
81 | Marques R S, Cooke R F, Rodrigues M C, et al. Effects of organic or inorganic cobalt, copper, manganese, and zinc supplementation to late-gestating beef cows on productive and physiological responses of the offspring[J]. Journal of Animal Science, 2016, 94(3): 1215-1226. |
82 | Echeverry H, Yitbarek A, Munyaka P, et al. Organic trace mineral supplementation enhances local and systemic innate immune responses and modulates oxidative stress in broiler chickens[J]. Poultry Science, 2016, 95(3): 518-527. |
83 |
Zhou W T, Miao S S, Zhu M K, et al. Effect of glycine nano-selenium supplementation on production performance, egg quality, serum biochemistry, oxidative status, and the intestinal morphology and absorption of laying hens[J]. Biological Trace Element Research, 2021, doi:10.1007/S12011-020-02532-X.
DOI |
84 | Wang Z C, Yu H M, Wu X Z, et al. Effects of dietary zinc pectin oligosaccharides chelate supplementation on growth performance, nutrient digestibility and tissue zinc concentrations of broilers[J]. Biological Trace Element Research, 2016, 173(2): 475-482. |
85 | Williams H E, DeRouchey J M, Woodworth J C, et al. Effects of increasing Fe dosage in newborn pigs on suckling and subsequent nursery performance and hematological and immunological criteria[J]. Journal of Animal Science, 2020, 98(8): skaa221. |
86 | Williams H E, Carrender B, Roubicek C D, et al. Effects of iron injection timing on suckling and subsequent nursery and growing-finishing performance and hematological criteria[J]. Journal of Animal Science, 2021, 99(3): skab071. |
[1] | 王琪, 张斌, 张晓昕, 武虎建, 战海涛, 王涛. 氯铝酸-三乙胺离子液体/P2O5催化合成伊索克酸和2-乙基蒽醌[J]. 化工学报, 2023, 74(S1): 245-249. |
[2] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[3] | 李彬, 徐正虎, 姜爽, 张天永. 双氧水催化氧化法清洁高效合成促进剂CBS[J]. 化工学报, 2023, 74(7): 2919-2925. |
[4] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[5] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[6] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
[7] | 葛泽峰, 吴雨青, 曾名迅, 查振婷, 马宇娜, 侯增辉, 张会岩. 灰化学成分对生物质气化特性的影响规律[J]. 化工学报, 2023, 74(5): 2136-2146. |
[8] | 刘润竹, 储甜甜, 张孝阿, 王成忠, 张军营. α,ω-端羟基亚苯基氟硅聚合物的合成及性能[J]. 化工学报, 2023, 74(3): 1360-1369. |
[9] | 王锋, 陈钰, 裴鸿艳, 刘东东, 张静, 张立新. 1,2,4-𫫇二唑类衍生物的设计、合成及抗菌活性[J]. 化工学报, 2023, 74(3): 1390-1398. |
[10] | 袁海鸥, 叶方俊, 张硕, 罗祎青, 袁希钢. 考虑中间换热器的能量集成精馏序列合成[J]. 化工学报, 2023, 74(2): 796-806. |
[11] | 张梦波, 楼琳瑾, 冯艺荣, 郑雨婷, 张浩淼, 王靖岱, 阳永荣. 烷基铝氧烷合成技术研究进展[J]. 化工学报, 2023, 74(2): 525-534. |
[12] | 张秋华, 刘曼路, 王峥, 张一鸣, 苏海佳. 维生素K2的生物合成及其甲萘醌基团合成酶的功能分析[J]. 化工学报, 2023, 74(1): 342-354. |
[13] | 宇国佳, 靳冬玉, 周智勇, 张帆, 任钟旗. 多孔液体的设计合成与应用研究进展[J]. 化工学报, 2023, 74(1): 257-275. |
[14] | 李鑫, 曾少娟, 彭奎霖, 袁磊, 张香平. CO2电催化还原制合成气研究进展及趋势[J]. 化工学报, 2023, 74(1): 313-329. |
[15] | 刘昕, 戈钧, 李春. 光驱动微生物杂合系统提高生物制造水平[J]. 化工学报, 2023, 74(1): 330-341. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||