化工学报 ›› 2022, Vol. 73 ›› Issue (1): 222-231.DOI: 10.11949/0438-1157.20210596
刘作华1,3(),周毅林1,3,熊黠1,3,陶长元1,3,王运东2
收稿日期:
2021-06-29
修回日期:
2021-08-08
出版日期:
2022-01-05
发布日期:
2022-01-18
通讯作者:
刘作华
作者简介:
刘作华(1973—),男,博士,教授,基金资助:
Zuohua LIU1,3(),Yilin ZHOU1,3,Xia XIONG1,3,Changyuan TAO1,3,Yundong WANG2
Received:
2021-06-29
Revised:
2021-08-08
Online:
2022-01-05
Published:
2022-01-18
Contact:
Zuohua LIU
摘要:
在传统三斜叶桨的基础上,结合逆流桨结构,提出三斜叶逆流桨,以破坏或者消除搅拌槽内稳定的对称性流场结构,提高流体传递效率及混沌混合程度。结合实验和模拟两种方法,主要研究了上推式三斜叶桨(PBTU)、外推内压式三斜叶逆流桨(PBTC-U)、外压内推式三斜叶逆流桨(PBTC-D)三种桨叶体系以及不同外层桨叶长度的PBTC-U桨体系内搅拌功耗、混合时间、混沌特性参数、流场结构以及流体速度分布。实验结果表明,N=130 r/min时,PBTC-U桨相对于PBTU桨和PBTC-D桨,体系混合时间分别从22.0、37.5 s缩短到16.5 s,功耗分别降低了5.6%和12.8%,LLE值分别提高了13.69%和37.01%。在确定PBTC-U桨适宜外层桨叶长度的研究中发现当外层桨叶长度D2=0.375D时,搅拌功耗最低且混合时间最短。PBTC-U型逆流桨通过内外层桨叶的逆流作用,强化体系内流体的随机运动,使得流场的不稳定性得到增强,对称性被破坏,进而流场结构失稳,流体混合效率得到提高。另外,PBTC-U桨可以增强流体轴、径向速度分布的波动性,有利于提高体系的混合效率。
中图分类号:
刘作华, 周毅林, 熊黠, 陶长元, 王运东. 逆流桨强化搅拌槽内流体混沌混合及流场结构失稳研究[J]. 化工学报, 2022, 73(1): 222-231.
Zuohua LIU, Yilin ZHOU, Xia XIONG, Changyuan TAO, Yundong WANG. Chaotic mixing intensification and flow field structure instability in stirred reactor by counter-flow pitched-blade turbine[J]. CIESC Journal, 2022, 73(1): 222-231.
图1 搅拌实验装置1—motor; 2—frequency modulator; 3—stirring shaft; 4—impeller; 5—baffle; 6—mixing tank; 7—data acquisition card; 8—computer
Fig.1 Mixing experimental apparatus and mesh model
13 | Liu Z H, Sun R X, Wang Y D, et al. Chaotic mixing intensified by rigid-flexible coupling impeller[J]. CIESC Journal, 2014, 65(9): 3340-3349. |
14 | 刘作华, 曾启琴, 杨鲜艳, 等. 刚柔组合搅拌桨与刚性桨调控流场结构的对比[J]. 化工学报, 2014, 65(6): 2078-2084. |
Liu Z H, Zeng Q Q, Yang X Y, et al. Flow field structure with rigid-flexible impeller and rigid impeller[J]. CIESC Journal, 2014, 65(6): 2078-2084. | |
15 | 刘作华, 陈超, 刘仁龙, 等. 刚柔组合搅拌桨强化搅拌槽中流体混沌混合[J]. 化工学报, 2014, 65(1): 61-70. |
Liu Z H, Chen C, Liu R L, et al. Chaotic mixing enhanced by rigid-flexible impeller in stirred vessel[J]. CIESC Journal, 2014, 65(1):61-70. | |
16 | 杨锋苓, 张翠勋, 苏腾龙. 柔性Rushton搅拌桨的功耗与流场特性研究[J]. 化工学报, 2020, 71(2): 614-625. |
Yang F L, Zhang C X, Su T L. Power and flow characteristics of flexible-blade Rushton impeller[J]. CIESC Journal, 2020, 71(2): 614-625. | |
17 | 杨锋苓, 张翠勋, 李美婷. 柔性Rushton搅拌桨混合性能的实验研究[J]. 化工学报, 2020, 71(2): 626-632. |
Yang F L, Zhang C X, Li M T. Experimental study on mixing characteristics of flexible-blade Rushton impeller[J]. CIESC Journal, 2020, 71(2): 626-632. | |
18 | 张廷松,张超,王永才, 等. 一种分解槽搅拌装置的桨叶: 2848823 [P]. 2006-12-20. |
Zhang T S, Zhang C, Wang Y C, et al. The utility model relates to a paddle blade of a decomposing tank agitator: 2848823 [P]. 2006-12-20. | |
19 | 周勇军, 蒋宾伟, 卢源, 等. 内加热搅拌釜中改进型INTER-MIG桨的传热性能[J]. 过程工程学报, 2014, 14(3): 377-382. |
1 | Zhu Q, Xiao H, Chen A, et al. CFD study on double-to single-loop flow pattern transition and its influence on macro mixing efficiency in fully baffled tank stirred by a Rushton turbine[J]. Chinese Journal of Chemical Engineering, 2019, 27(5): 993-1000. |
2 | Pukkella A K, Vysyaraju R, Tammishetti V, et al. Improved mixing of solid suspensions in stirred tanks with interface baffles: CFD simulation and experimental validation[J]. Chemical Engineering Journal, 2019, 358: 621-633. |
3 | Gu D, Ye M, Wang X, et al. Numerical investigation on mixing characteristics of floating and sinking particles in a stirred tank with fractal impellers[J]. Journal of the Taiwan Institute of Chemical Engineers, 2020, 116: 51-61. |
4 | Hoseini S S, Najafi G, Ghobadian B, et al. Impeller shape-optimization of stirred-tank reactor: CFD and fluid structure interaction analyses[J]. Chemical Engineering Journal, 2021,413: 127497. |
5 | Basavarajappa M, Miskovic S. CFD simulation of single-phase flow in flotation cells: effect of impeller blade shape, clearance, and Reynolds number[J]. International Journal of Mining Science and Technology, 2019, 29(5): 657-669. |
6 | Ameur H. Newly modified curved-bladed impellers for process intensification: energy saving in the agitation of Hershel-Bulkley fluids[J]. Chemical Engineering and Processing-Process Intensification, 2020, 154: 108009. |
7 | Li Z, Bao Y, Gao Z. PIV experiments and large eddy simulations of single-loop flow fields in Rushton turbine stirred tanks [J]. Chemical Engineering Science, 2011, 66(6): 1219-1231. |
8 | Bouremel Y, Yianneskis M, Ducci A. Three-dimensional deformation dynamics of trailing vortex structures in a stirred vessel[J]. Industrial & engineering chemistry research, 2009, 48(17): 8148-8158. |
9 | Li Z, Hu M, Bao Y, et al. Particle image velocimetry experiments and large eddy simulations of merging flow characteristics in dual Rushton turbine stirred tanks[J]. Industrial & engineering chemistry research, 2012, 51(5): 2438-2450. |
10 | Mule G M, Kulkarni A A. Mixing of medium viscosity liquids in a stirred tank with fractal impeller[J]. Theoretical Foundations of Chemical Engineering, 2016, 50(6): 914-921. |
11 | Jia H, Wang F, Wu J, et al. CFD research on the influence of 45° disk turbine agitator blade diameter on the solid-liquid mixing characteristics of the cone-bottom stirred tank[J]. Arabian Journal for Science and Engineering, 2020, 45(7): 5741-5749. |
12 | Ameur H. Some modifications in the Scaba 6SRGT impeller to enhance the mixing characteristics of Hershel-Bulkley fluids[J]. Food and Bioproducts Processing, 2019, 117: 302-309. |
13 | 刘作华, 孙瑞祥, 王运东, 等. 刚-柔组合桨强化流体混沌混合[J]. 化工学报, 2014, 65(9): 3340-3349. |
19 | Zhou Y J, Jiang B W, Lu Y, et al. Heat transfer performance of improved INTER-MIG impeller in a stirred tank with inner-heating coil[J]. The Chinese Journal of Process Engineering, 2014, 14(3): 377-382. |
20 | 林伟振, 周勇军, 王璐璐, 等. 改进型INTER-MIG桨尾涡结构的PIV试验与模拟[J]. 排灌机械工程学报, 2021, 39(2): 158-164. |
Lin W Z, Zhou Y J, Wang L L, et al. PIV experiment and numerical simulation of trailing vortex structure of improved INTER-MIG impeller[J]. Journal of Drainage and Irrigation Machinery Engineering, 2021, 39(2): 158-164. | |
21 | 王璐璐, 周勇军, 鲍苏洋, 等.改进型INTER-MIG桨搅拌槽内流场的 PIV 实验[J]. 过程工程学报, 2017, 17(3): 447-452. |
Wang L L, Zhou Y J, Bao S Y, et al. PIV experiments on flow field of stirred tank with improved INTER-MIG impeller[J]. The Chinese Journal of Process Engineering, 2017, 17(3): 447-452. | |
22 | Li X, Zhao H, Zhang Z, et al. Numerical optimization for blades of intermig impeller in solid–liquid stirred tank[J]. Chinese Journal of Chemical Engineering, 2021, 29: 57-66. |
23 | Zhao H, Zhao X, Zhang L, et al. Experimental study on scale-up of solid-liquid stirred tank with an intermig impeller[J]. JOM, 2017, 69(2): 301-306. |
24 | 徐昊鹏, 周勇军, 何华, 等.双层改进型Inter-Mig桨对带内盘管搅拌釜内流场性能影响[J]. 石油化工设备, 2019, 48(4): 15-21. |
Xu H P, Zhou Y J, He H, et al. Effect of double layer improved Inter-Mig impeller on flow field performance in stirred tank with inner coil[J]. Petro-Chemical Equipment, 2019, 48(4): 15-21. | |
25 | Wang L, Zhou Y, Chen Z. Investigation of heat transfer efficiency of improved intermig impellers in a stirred tank equipped with vertical tubes[J]. International Journal of Chemical Reactor Engineering, 2020, 18(3). |
26 | Szalai E S, Arratia P, Johnson K, et al. Mixing analysis in a tank stirred with Ekato Intermig® impellers[J]. Chemical Engineering Science, 2004, 59(18): 3793-3805. |
27 | 刘作华, 魏红军, 熊黠, 等. 错位刚柔桨强化搅拌槽内流体混合实验及数值模拟[J]. 化工学报, 2020, 71(10): 4621-4631. |
Liu Z H, Wei H J, Xiong X, et al. Experiment and numerical simulation of chaotic mixing performance enhanced by perturbed rigid-flexible impeller in stirred tank[J]. CIESC Journal, 2020, 71(10): 4621-4631. | |
28 | Ascanio G. Mixing time in stirred vessels: a review of experimental techniques[J]. Chinese Journal of Chemical Engineering, 2015, 23(7): 1065-1076. |
29 | Versteeg H K, Malalasekera W. An Introduction to Computational Fluid Dynamics: the Finite Volume Method[M]//England: Pearson Education Limited, 2007:503. |
30 | Feng Z, Sun Y, Liu X, et al. Design and application of new impeller-type wax-proof device based on speed-increasing wax-proof mechanism[J]. Journal of Petroleum Science and Engineering, 2021, 200: 108392. |
31 | Rosenstein M T, Collins J J, Luca C J D, et al. A practical method for calculating largest Lyapunov exponents from small data sets[J]. Physica D: Nonlinear Phenomena, 1993, 65(1):117-134. |
32 | 白春江, 崔万照, 李军.基于混沌理论的无源互调功率预测研究[J]. 电子与信息学报, 2021, 43(1): 124-130. |
Bai C J, Cui W Z, Li J. Prediction of passive intermodulation level based on chaos method[J]. Journal of Electronics & Information Technology, 2021, 43(1): 124-130. | |
33 | 陈敏, 叶晓舟.时间序列的混沌识别方法研究[J]. 电脑与信息技术, 2008, 16(6): 17-19, 26. |
Chen M, Ye X C. Research on the chaotic time series identification method[J]. Computer and Information Technology, 2008, 16(6): 17-19, 26. |
[1] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[4] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[5] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[6] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[7] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[8] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[9] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和![]() |
[10] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[11] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[12] | 黄可欣, 李彤, 李桉琦, 林梅. 加装旋转叶轮T型通道流场的模态分解[J]. 化工学报, 2023, 74(7): 2848-2857. |
[13] | 史方哲, 甘云华. 超薄热管启动特性和传热性能数值模拟[J]. 化工学报, 2023, 74(7): 2814-2823. |
[14] | 于源, 陈薇薇, 付俊杰, 刘家祥, 焦志伟. 几何相似涡流空气分级机环形区流场变化规律研究及预测[J]. 化工学报, 2023, 74(6): 2363-2373. |
[15] | 张媛媛, 曲江源, 苏欣欣, 杨静, 张锴. 循环流化床燃煤机组SNCR脱硝过程气液传质和反应特性[J]. 化工学报, 2023, 74(6): 2404-2415. |
阅读次数 | ||||||
全文 202
|
|
|||||
摘要 |
|
|||||