化工学报 ›› 2022, Vol. 73 ›› Issue (1): 411-424.DOI: 10.11949/0438-1157.20211237
王晓蓉1(),曾玺2,3(),王芳2,3,张光义2,3,许德平1,许光文3,4
收稿日期:
2021-08-26
修回日期:
2021-11-02
出版日期:
2022-01-05
发布日期:
2022-01-18
通讯作者:
曾玺
作者简介:
王晓蓉(1995—),女,硕士研究生,基金资助:
Xiaorong WANG1(),Xi ZENG2,3(),Fang WANG2,3,Guangyi ZHANG2,3,Deping XU1,Guangwen XU3,4
Received:
2021-08-26
Revised:
2021-11-02
Online:
2022-01-05
Published:
2022-01-18
Contact:
Xi ZENG
摘要:
糠醛渣的能源化利用是糠醛产业清洁生产和碳减排的有效途径。然而,现有的直接燃烧利用常面临着因糠醛渣高K引起的灰分烧结严重、高S导致的SOx排放量大和高水含量导致的燃烧效率低等难题。基于此,在管式炉中考察了单一气氛(N2、CO2、O2)和混合气氛(N2+H2O、CO2+H2O、O2+H2O)中糠醛渣灰在不同温度下的烧结特性,并对灰分颜色、收缩率、微观形貌、矿物质成分和K/S释放等特性进行系统分析。灰分热收缩行为显示,随温度升高,灰样收缩率增加;在单一气氛中添加水蒸气能促进灰分烧结。SEM分析发现,在灰分烧结前,其微观结构在低温下已出现熔融和结渣。XRD分析表明,灰分烧结与低熔点矿物生成紧密相关。单一气氛中,高温下N2促进钾长石生成;CO2抑制钾长石生成;O2促进钙铝黄长石和透辉石生成。在混合气氛中,水蒸气的出现促进多种低熔点钾铝硅酸盐生成,如钾长石和白榴石等。XRF分析显示,随温度升高,灰样中K的固留率(GK)和S的固留率(GS)降低;在考察的单一气氛中,高温时,N2中GK最低;GS受气氛的影响较小。在考察的复合气氛中,高温时,GK受气氛影响较小;GS受气氛影响严重,特别地,O2+H2O气氛中GS最高,S逸散最少。为抑制糠醛渣灰分烧结和K/S元素逸散到气相中,糠醛渣在流化床燃烧过程中应控制运行温度(低于900℃)、降低气氛中N2的含量。
中图分类号:
王晓蓉, 曾玺, 王芳, 张光义, 许德平, 许光文. 温度和气氛对高K高S糠醛渣灰分的烧结特性研究[J]. 化工学报, 2022, 73(1): 411-424.
Xiaorong WANG, Xi ZENG, Fang WANG, Guangyi ZHANG, Deping XU, Guangwen XU. Effect of temperature and atmosphere on ash sintering characteristics of furfural residue with high K and S[J]. CIESC Journal, 2022, 73(1): 411-424.
利用技术 | 优点 | 局限性 |
---|---|---|
堆积或填埋 | 简单,无技术难度 | 占用大量土地,产生二次污染 |
作物栽培 | 提高农作物产量和菌类产菌率 | 食品安全性有待验证 |
土壤用肥 | 提高碱性土壤可耕作性,扩大可耕种土地面积 | 难进行大规模利用且仅适用于盐碱土地 |
提取木质素或纤维素 | 经济效益好 | 生产成本高,工艺复杂 |
制备活性炭 | 工艺比较成熟,设备投资少,生产成本低 | 活性炭品质低,仅适用于工业污水处理 |
燃烧等能源化利用 | 成本低,处理效率快,可为糠醛生产提供热量 | 原料高含水,燃烧室温度分布不均,灰分易烧结,NOx含量高 |
表1 糠醛渣处理技术分析
Table 1 Technology analysis of furfural residue utilization
利用技术 | 优点 | 局限性 |
---|---|---|
堆积或填埋 | 简单,无技术难度 | 占用大量土地,产生二次污染 |
作物栽培 | 提高农作物产量和菌类产菌率 | 食品安全性有待验证 |
土壤用肥 | 提高碱性土壤可耕作性,扩大可耕种土地面积 | 难进行大规模利用且仅适用于盐碱土地 |
提取木质素或纤维素 | 经济效益好 | 生产成本高,工艺复杂 |
制备活性炭 | 工艺比较成熟,设备投资少,生产成本低 | 活性炭品质低,仅适用于工业污水处理 |
燃烧等能源化利用 | 成本低,处理效率快,可为糠醛生产提供热量 | 原料高含水,燃烧室温度分布不均,灰分易烧结,NOx含量高 |
生物质灰 | 含量/%(质量) | ||
---|---|---|---|
Na2O | K2O | SO3 | |
糠醛渣 | 0.94 | 12.57 | 23.82 |
稻壳 | 0.39 | 1.86 | 0.09 |
木屑 | 0.01 | 8.21 | 7.60 |
花生壳 | 0.67 | 10.40 | 3.42 |
谷壳 | 2.90 | 0.06 | 1.3 |
杨树 | 8.20 | 0.70 | 5.50 |
稻秸秆 | 10.80 | 1.91 | 2.36 |
表2 生物质灰中碱金属和硫含量对比
Table 2 Comparison of alkali metal content in biomass ash samples
生物质灰 | 含量/%(质量) | ||
---|---|---|---|
Na2O | K2O | SO3 | |
糠醛渣 | 0.94 | 12.57 | 23.82 |
稻壳 | 0.39 | 1.86 | 0.09 |
木屑 | 0.01 | 8.21 | 7.60 |
花生壳 | 0.67 | 10.40 | 3.42 |
谷壳 | 2.90 | 0.06 | 1.3 |
杨树 | 8.20 | 0.70 | 5.50 |
稻秸秆 | 10.80 | 1.91 | 2.36 |
样品 | 工业分析 wad/% | 元素分析 wdaf/% | |||||||
---|---|---|---|---|---|---|---|---|---|
M | A | V | FC | C | H | O① | N | S | |
糠醛渣 | 4.53 | 20.94 | 61.68 | 12.85 | 56.45 | 5.66 | 36.75 | 0.69 | 0.45 |
表3 糠醛渣的工业和元素分析
Table 3 Proximate and ultimate analysis of furfural residue
样品 | 工业分析 wad/% | 元素分析 wdaf/% | |||||||
---|---|---|---|---|---|---|---|---|---|
M | A | V | FC | C | H | O① | N | S | |
糠醛渣 | 4.53 | 20.94 | 61.68 | 12.85 | 56.45 | 5.66 | 36.75 | 0.69 | 0.45 |
各种组分含量/%(质量) | |||||||||
---|---|---|---|---|---|---|---|---|---|
SiO2 | SO3 | K2O | Al2O3 | CaO | Fe2O3 | MgO | P2O5 | TiO2 | 其他 |
37.78 | 23.82 | 12.57 | 9.06 | 5.79 | 3.78 | 3.08 | 1.72 | 1.12 | 1.28 |
表4 糠醛渣灰样成分分析
Table 4 Components of furfural residue ash
各种组分含量/%(质量) | |||||||||
---|---|---|---|---|---|---|---|---|---|
SiO2 | SO3 | K2O | Al2O3 | CaO | Fe2O3 | MgO | P2O5 | TiO2 | 其他 |
37.78 | 23.82 | 12.57 | 9.06 | 5.79 | 3.78 | 3.08 | 1.72 | 1.12 | 1.28 |
气氛 | 灰样烧结 温度区间/℃ | 烧结前收缩率范围 | |
---|---|---|---|
单一气氛 | N2 | 1000~1100 | 30.1~68.9 |
CO2 | 1100~1150 | 42.4~55 | |
O2 | 1100~1150 | 49.3~77.3 | |
混合气氛 | N2+H2O | 900~1000 | 26.7~57.3 |
CO2+H2O | 1000~1100 | 35~59.6 | |
O2+H2O | 1000~1100 | 19.3~64 |
表5 各气氛中灰样热处理的典型数据分析
Table 5 Typical data analysis for thermal treatment of biomass ash
气氛 | 灰样烧结 温度区间/℃ | 烧结前收缩率范围 | |
---|---|---|---|
单一气氛 | N2 | 1000~1100 | 30.1~68.9 |
CO2 | 1100~1150 | 42.4~55 | |
O2 | 1100~1150 | 49.3~77.3 | |
混合气氛 | N2+H2O | 900~1000 | 26.7~57.3 |
CO2+H2O | 1000~1100 | 35~59.6 | |
O2+H2O | 1000~1100 | 19.3~64 |
序号 | 化学式 | 名称 | 熔融/分解 温度℃ | 序号 | 化学式 | 名称 | 熔融/分解 温度℃ |
---|---|---|---|---|---|---|---|
1 | SiO2 | 石英 | 1750 | 12 | CaSO4 | 硫酸钙 | 880~1150 |
2 | Ca(Al2SiO8) | 钙长石 | 1250~1550 | 13 | Fe2SiO4 | 铁橄榄石 | 1200 |
3 | K(AlSi3O8) | 钾长石 | 1130~1450 | 14 | (KH)2(MgFe)2(AlFe)2(SiO4) | 黑云母 | 1800 |
4 | CaAl4O7 | 钙铝氧化物 | 1890 | 15 | KAlSi2O6 | 白榴石 | 1120~1380 |
5 | Mg2SiO4 | 镁橄榄石 | 1580~1750 | 16 | Ca(Mg,Al,Fe)Si2O6 | 辉石 | 1300~1400 |
6 | Al5SiO9.5 | 莫来石 | 1170~1390 | 17 | SiO2 | 硫方英石 | 1713 |
7 | CaMgSi2O6 | 透辉石 | 2054~2572 | 18 | Ca3Al2(SiO4)3 | 钙铝榴石 | 1080 |
8 | NaAlSiO4 | 霞石 | 1526 | 19 | KAlSi3O8 | 正长石 | 1050 |
9 | Ca2Al2SiO7 | 钙铝黄长石 | 1593 | 20 | NaFeSi2O6 | 锥辉石 | 1000~1204 |
10 | KAlSiO4 | 钾铝硅酸盐 | 1130~1450 | 21 | (Ca0.79Fe0.21)SiO3 | 铁硅灰石 | 1540 |
11 | Al2(SO4)2 | 硫酸铝 | 880~1150 |
表6 不同气氛中灰样成分
Table 6 Components of ash sample in different atmospheres
序号 | 化学式 | 名称 | 熔融/分解 温度℃ | 序号 | 化学式 | 名称 | 熔融/分解 温度℃ |
---|---|---|---|---|---|---|---|
1 | SiO2 | 石英 | 1750 | 12 | CaSO4 | 硫酸钙 | 880~1150 |
2 | Ca(Al2SiO8) | 钙长石 | 1250~1550 | 13 | Fe2SiO4 | 铁橄榄石 | 1200 |
3 | K(AlSi3O8) | 钾长石 | 1130~1450 | 14 | (KH)2(MgFe)2(AlFe)2(SiO4) | 黑云母 | 1800 |
4 | CaAl4O7 | 钙铝氧化物 | 1890 | 15 | KAlSi2O6 | 白榴石 | 1120~1380 |
5 | Mg2SiO4 | 镁橄榄石 | 1580~1750 | 16 | Ca(Mg,Al,Fe)Si2O6 | 辉石 | 1300~1400 |
6 | Al5SiO9.5 | 莫来石 | 1170~1390 | 17 | SiO2 | 硫方英石 | 1713 |
7 | CaMgSi2O6 | 透辉石 | 2054~2572 | 18 | Ca3Al2(SiO4)3 | 钙铝榴石 | 1080 |
8 | NaAlSiO4 | 霞石 | 1526 | 19 | KAlSi3O8 | 正长石 | 1050 |
9 | Ca2Al2SiO7 | 钙铝黄长石 | 1593 | 20 | NaFeSi2O6 | 锥辉石 | 1000~1204 |
10 | KAlSiO4 | 钾铝硅酸盐 | 1130~1450 | 21 | (Ca0.79Fe0.21)SiO3 | 铁硅灰石 | 1540 |
11 | Al2(SO4)2 | 硫酸铝 | 880~1150 |
序号 | 化学反应方程式 |
---|---|
R1 | Al2(SO4)3 |
R2 | CaSO4 |
R3 | CaO+Al2O3 |
R4 | |
R5 | 2CaO+Al2O3+SiO2 |
R6 | |
R7 | CaO+MgO+2SiO2 |
R8 | Na2O+Al2O3+2SiO2 |
R9 | 2MgO+SiO2 |
R10 | 4FeO+2SiO2 |
R11 | |
R12 | |
R13 | 3CaO+Al2O3+3SiO2 |
R14 | Na2O+Fe2O3+4SiO2 |
表7 糠醛渣灰样在高温下发生的反应
Table 7 Reactions among components in furfural residue ash at high temperatures
序号 | 化学反应方程式 |
---|---|
R1 | Al2(SO4)3 |
R2 | CaSO4 |
R3 | CaO+Al2O3 |
R4 | |
R5 | 2CaO+Al2O3+SiO2 |
R6 | |
R7 | CaO+MgO+2SiO2 |
R8 | Na2O+Al2O3+2SiO2 |
R9 | 2MgO+SiO2 |
R10 | 4FeO+2SiO2 |
R11 | |
R12 | |
R13 | 3CaO+Al2O3+3SiO2 |
R14 | Na2O+Fe2O3+4SiO2 |
1 | 王素芬, 苏东海, 周凌云. 废物糠醛渣的农业利用研究进展[J]. 河北农业科学, 2009, 13(11): 97-99. |
Wang S F, Su D H, Zhou L Y. Research progress of agricultural utilization of furfural residue[J]. Journal of Hebei Agricultural Sciences, 2009, 13(11): 97-99. | |
2 | 汪丹妮. 糠醛渣和石膏对碱土型水稻土改良效果及水稻生长的影响[D]. 哈尔滨: 东北农业大学, 2020. |
Wang D N. Improvement of alkaline paddy soil by furfural residue and gypsum and their influence on rice growth[D]. Harbin: Northeast Agricultural University, 2020. | |
3 | 阳瑞. 糠醛渣综合利用新探索[D]. 广州: 华南理工大学, 2011. |
Yang R. A new exploration of the comprehensive utilization of furfural residues[D]. Guangzhou: South China University of Technology, 2011. | |
4 | 杨志荣. 糠醛渣在循环流化床中的燃烧特性试验研究[D]. 吉林: 东北电力大学, 2012. |
Yang Z R. Experimental studies of furfural residue combustion characteristics in fluidized bed[D]. Jilin: Northeast Dianli University, 2012. | |
5 | 米铁, 陈汉平, 吴正舜, 等. 生物质灰化学特性的研究[J]. 太阳能学报, 2004, 25(2): 236-241. |
Mi T, Chen H P, Wu Z S, et al. Chemistry characteristic study on biomass ash[J]. Acta Energiae Solaris Sinica, 2004, 25(2): 236-241. | |
6 | 曹琴, 黄胜, 吴诗勇, 等. 生物质中矿物质在气化条件下的演变行为研究[J]. 燃料化学学报, 2016, 44(6): 668-673. |
Cao Q, Huang S, Wu S Y, et al. Evolution behaviors of mineral matters in biomass under gasification conditions[J]. Journal of Fuel Chemistry and Technology, 2016, 44(6): 668-673. | |
7 | 李丹琼, 周来, 张谷春, 等. 生物质灰理化特性及其应用于土壤改良的研究进展[J]. 能源环境保护, 2020, 34(1): 1-7. |
Li D Q, Zhou L, Zhang G C, et al. Review on the physicochemical properties of biomass ash and its application in soil amelioration and remediation[J]. Energy Environmental Protection, 2020, 34(1): 1-7. | |
8 | Gatternig B, Karl J. Investigations on the mechanisms of ash-induced agglomeration in fluidized-bed combustion of biomass[J]. Energy & Fuels, 2015, 29(2): 931-941. |
9 | Niu Y Q, Du W Z, Tan H Z, et al. Further study on biomass ash characteristics at elevated ashing temperatures: the evolution of K, Cl, S and the ash fusion characteristics[J]. Bioresource Technology, 2013, 129: 642-645. |
10 | Wang X B, Liu Y Y, Tan H Z, et al. Mechanism research on the development of ash deposits on the heating surface of biomass furnaces[J]. Industrial & Engineering Chemistry Research, 2012, 51(39): 12984-12992. |
11 | 孟晓晓, 孙锐, 袁皓, 等. 不同热解温度下玉米秸秆中碱金属K和Na的释放及半焦中赋存特性[J]. 化工学报, 2017, 68(4): 1600-1607. |
Meng X X, Sun R, Yuan H, et al. Effect of different pyrolysis temperature on alkali metal K and Na emission and existence in semi-char[J]. CIESC Journal, 2017, 68(4): 1600-1607. | |
12 | 郭飞强, 刘元, 郭成龙, 等. 微型流化床内碱金属和碱土金属对稻壳热解动力学的影响特性[J]. 化工学报, 2017, 68(10): 3795-3804. |
Guo F Q, Liu Y, Guo C L, et al. Influence of AAEM on kinetic characteristics of rice husk pyrolysis in micro-fluidized bed reactor [J]. CIESC Journal, 2017, 68(10): 3795-3804. | |
13 | 余作伟, 刘倩, 钟文琪, 等. 烘焙生物质燃烧过程中钾的赋存形态及析出迁移特性[J]. 化工学报, 2021, 72(4): 2258-2266. |
Yu Z W, Liu Q, Zhong W Q, et al. Occurrence form and release and migration characteristics of potassium during combustion of torrefied biomass[J]. CIESC Journal, 2021, 72(4): 2258-2266. | |
14 | Song W J, Tang L H, Zhu X D, et al. Prediction of Chinese coal ash fusion temperatures in Ar and H2 atmospheres[J]. Energy & Fuels, 2009, 23(4): 1990-1997. |
15 | 王立群, 张羽钧, 马亮. 生物质与煤共气化灰熔融和结渣特性[J]. 中南大学学报(自然科学版), 2021, 52(4): 1307-1315. |
Wang L Q, Zhang Y J, Ma L. Fusion and slagging characteristics of ash produced by co-gasification of biomass and coal[J]. Journal of Central South University (Science and Technology), 2021, 52(4): 1307-1315. | |
16 | 张冠军. 还原气氛下煤和生物质灰熔融行为[J]. 洁净煤技术, 2017, 23(6): 65-69. |
Zhang G J. Ash melting behavior of coal and biomass in reducing atmosphere[J]. Clean Coal Technology, 2017, 23(6): 65-69. | |
17 | Wei X L, Schnell U, Hein K R G. Behaviour of gaseous chlorine and alkali metals during biomass thermal utilisation[J]. Fuel, 2005, 84(7/8): 841-848. |
18 | 吕俊复, 史航, 吴玉新, 等. 烟气气氛对准东煤灰熔融特性影响的显微观察[J]. 煤炭学报, 2021, 46(1): 263-273. |
Lyu J F, Shi H, Wu Y X, et al. Influence of flue gas atmosphere on Zhundong coal ash melting characteristics through microscopic observation[J]. Journal of China Coal Society, 2021, 46(1): 263-273. | |
19 | Öhman M, Pommer L, Nordin A. Bed agglomeration characteristics and mechanisms during gasification and combustion of biomass fuels[J]. Energy & Fuels, 2005, 19(4): 1742-1748. |
20 | 黄芳, 张立麒, 易宝军, 等. O2/CO2气氛下高温煤灰热行为及其矿物相转化规律[J]. 煤炭学报, 2015, 40(11): 2714-2719. |
Huang F, Zhang L Q, Yi B J, et al. Thermal and mineral matter transformation behavior of coal ashes in O2/CO2 atmosphere[J]. Journal of China Coal Society, 2015, 40(11): 2714-2719. | |
21 | 杜胜磊, 杨海平, 钱柯贞, 等. 生物质热解过程中碱及碱土金属迁徙规律研究[J]. 中国电机工程学报, 2013, 33(26): 48-53. |
Du S L, Yang H P, Qian K Z, et al. Releasing behavior of alkali and alkaline earth metals during biomass pyrolysis[J]. Proceedings of the CSEE, 2013, 33(26): 48-53. | |
22 | 王雪. 中药渣流化床热解气化及其灰熔融特性研究[D]. 马鞍山: 安徽工业大学, 2016. |
Wang X. Research on pyrolysis and gasification in fluidized bed and ash fusion characteristics of herb residue[D]. Ma’anshan: Anhui University of Technology, 2016. | |
23 | 王勤辉, 景妮洁, 骆仲泱, 等. 灰成分影响煤灰烧结温度的实验研究[J]. 煤炭学报, 2010, 35(6): 1015-1020. |
Wang Q H, Jing N J, Luo Z Y, et al. Experiments on the effect of chemical components of coal ash on the sintering temperature[J]. Journal of China Coal Society, 2010, 35(6): 1015-1020. | |
24 | 陈胜, 于敦喜, 吴建群, 等. 新疆高钙煤混烧对灰中含钙矿物熔融特性影响[J]. 化工学报, 2020, 71(9): 4260-4269. |
Chen S, Yu D X, Wu J Q, et al. Effects of Xinjiang high calcium coal co-firing on melting characteristics of Ca-bearing minerals in ash[J]. CIESC Journal, 2020, 71(9): 4260-4269. | |
25 | 毛燕东, 金亚丹, 李克忠, 等. 煤催化气化工艺中内蒙王家塔烟煤灰烧结温度的影响因素分析[J]. 化工学报, 2015, 66(3): 1080-1087. |
Mao Y D, Jin Y D, Li K Z, et al. Analysis of influencing factors on sintering temperature of Inner Mongolia Wangjiata bituminous coal ash during catalytic coal gasification[J]. CIESC Journal, 2015, 66(3): 1080-1087. | |
26 | Mlonka-Mędrala A, Magdziarz A, Gajek M, et al. Alkali metals association in biomass and their impact on ash melting behaviour [J]. Fuel, 2020, 261: 116421. |
27 | Niu Y Q, Tan H Z, Wang X B, et al. Study on fusion characteristics of biomass ash[J]. Bioresource Technology, 2010, 101(23): 9373-9381. |
28 | 刘璐, 王永征, 王旭, 等. 富磷添加剂对生物质燃烧中积灰结渣和腐蚀作用的探析[J]. 可再生能源, 2018, 36(7): 949-954. |
Liu L, Wang Y Z, Wang X, et al. Study on the effect of phosphorus rich additives on ash deposition, slag and corrosion during biomass combustion[J]. Renewable Energy Resources, 2018, 36(7): 949-954. | |
29 | 姚锡文, 许开立, 徐晓虎. 灰化温度对生物质灰特性与沾污结渣的影响[J]. 农业机械学报, 2016, 47(1): 182-189. |
Yao X W, Xu K L, Xu X H. Influence of ashing temperature on slagging and fouling characteristics of biomass ash[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(1): 182-189. | |
30 | 许洁, 李帅丹, 刘帅君. 典型秸秆类生物质灰的特性研究[J]. 热能动力工程, 2019, 34(12): 137-141, 154. |
Xu J, Li S D, Liu S J. Investigation on the ash properties of straw[J]. Journal of Engineering for Thermal Energy and Power, 2019, 34(12): 137-141, 154. | |
31 | Llorente M J F, Arocas P D, Nebot L G, et al. The effect of the addition of chemical materials on the sintering of biomass ash[J]. Fuel, 2008, 87(12): 2651-2658. |
32 | 李冬冬, 刘圣勇, 李冲, 等. 添加剂对小麦秸秆燃烧结渣特性影响的试验研究[J]. 河南农业大学学报, 2017, 51(6): 845-851. |
Li D D, Liu S Y, Li C, et al. Effects of additives on slag characteristics of wheat straw[J]. Journal of Henan Agricultural University, 2017, 51(6): 845-851. | |
33 | Boström D, Grimm A, Boman C, et al. Influence of Kaolin and calcite additives on ash transformations in small-scale combustion of oat[J]. Energy & Fuels, 2009, 23(10): 5184-5190. |
34 | 赖喜锐, 周肇秋, 刘华财, 等. 生物质灰烧结熔融规律实验研究[J]. 农业机械学报, 2016, 47(3): 158-166. |
Lai X R, Zhou Z Q, Liu H C, et al. Experiment study of biomass ash sintering and melting[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(3): 158-166. | |
35 | 于志浩, 金晶, 张瑞璞, 等. 白云石添加剂对稻秆灰熔融特性及固钾能力的影响[J]. 燃料化学学报, 2020, 48(7): 795-803. |
Yu Z H, Jin J, Zhang R P, et al. Influence of dolomite additive on the ash fusion and potassium fixation characteristics of rice straw[J]. Journal of Fuel Chemistry and Technology, 2020, 48(7): 795-803. | |
36 | Pan Z Z, Zhang S P, Liu X Z, et al. Effect of sludge-based additive on ash characteristic and potassium fixation during the rice straw combustion process[J]. Energy & Fuels, 2020, 34(3): 3367-3375. |
37 | Vassilev S V, Kitano K, Takeda S, et al. Influence of mineral and chemical composition of coal ashes on their fusibility[J]. Fuel Processing Technology, 1995, 45(1): 27-51. |
38 | 李风海, 黄戒介, 房倚天, 等. 小龙潭褐煤灰熔融特性影响因素的研究[J]. 洁净煤技术, 2010, 16(6): 49-53. |
Li F H, Huang J J, Fang Y T, et al. Research on the effect of the fusion characteristics of Xiaolongtan lignite ashes[J]. Clean Coal Technology, 2010, 16(6): 49-53. | |
39 | 马修卫, 李风海, 马名杰, 等. 长治煤与生物质混合灰熔融特性研究[J]. 燃料化学学报, 2018, 46(2): 129-137. |
Ma X W, Li F H, Ma M J, et al. Fusion characteristics of blended ash from Changzhi coal and biomass[J]. Journal of Fuel Chemistry and Technology, 2018, 46(2): 129-137. | |
40 | Blomberg T. A thermodynamic study of the gaseous potassium chemistry in the convection sections of biomass fired boilers[J]. Materials and Corrosion, 2011, 62(7): 635-641. |
41 | Thy P, Jenkins B M, Grundvig S, et al. High temperature elemental losses and mineralogical changes in common biomass ashes[J]. Fuel, 2006, 85(5/6): 783-795. |
42 | Boonsongsup L, Iisa K, Frederick W J. Kinetics of the sulfation of NaCl at combustion conditions[J]. Industrial & Engineering Chemistry Research, 1997, 36(10): 4212-4216. |
43 | Brus E, Öhman M, Nordin A. Mechanisms of bed agglomeration during fluidized-bed combustion of biomass fuels[J]. Energy & Fuels, 2005, 19(3): 825-832. |
44 | Grimm A, Skoglund N, Boström D, et al. Bed agglomeration characteristics in fluidized quartz bed combustion of phosphorus-rich biomass fuels[J]. Energy & Fuels, 2011, 25(3): 937-947. |
45 | Niu Y Q, Tan H Z, Hui S E. Ash-related issues during biomass combustion: alkali-induced slagging, silicate melt-induced slagging (ash fusion), agglomeration, corrosion, ash utilization, and related countermeasures[J]. Progress in Energy and Combustion Science, 2016, 52: 1-61. |
46 | Demirbas A. Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues[J]. Progress in Energy and Combustion Science, 2005, 31(2): 171-192. |
[1] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[2] | 曾如宾, 沈中杰, 梁钦锋, 许建良, 代正华, 刘海峰. 基于分子动力学模拟的Fe2O3纳米颗粒烧结机制研究[J]. 化工学报, 2023, 74(8): 3353-3365. |
[3] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[4] | 吴文涛, 褚良永, 张玲洁, 谭伟民, 沈丽明, 暴宁钟. 腰果酚生物基自愈合微胶囊的高效制备工艺研究[J]. 化工学报, 2023, 74(7): 3103-3115. |
[5] | 杨峥豪, 何臻, 常玉龙, 靳紫恒, 江霞. 生物质快速热解下行式流化床反应器研究进展[J]. 化工学报, 2023, 74(6): 2249-2263. |
[6] | 陈巨辉, 张谦, 舒崚峰, 李丹, 徐鑫, 刘晓刚, 赵晨希, 曹希峰. 基于DEM方法的旋转流化床纳米颗粒流动特性研究[J]. 化工学报, 2023, 74(6): 2374-2381. |
[7] | 董茂林, 陈李栋, 黄六莲, 吴伟兵, 戴红旗, 卞辉洋. 酸性助水溶剂制备木质纳米纤维素及功能应用研究进展[J]. 化工学报, 2023, 74(6): 2281-2295. |
[8] | 张媛媛, 曲江源, 苏欣欣, 杨静, 张锴. 循环流化床燃煤机组SNCR脱硝过程气液传质和反应特性[J]. 化工学报, 2023, 74(6): 2404-2415. |
[9] | 葛泽峰, 吴雨青, 曾名迅, 查振婷, 马宇娜, 侯增辉, 张会岩. 灰化学成分对生物质气化特性的影响规律[J]. 化工学报, 2023, 74(5): 2136-2146. |
[10] | 袁子涵, 王淑彦, 邵宝力, 谢磊, 陈曦, 马一玫. 基于幂律液固曳力模型流化床内湿颗粒流动特性的研究[J]. 化工学报, 2023, 74(5): 2000-2012. |
[11] | 蔺彩虹, 王丽, 吴瑜, 刘鹏, 杨江峰, 李晋平. 沸石中碱金属阳离子对CO2/N2O吸附分离性能的影响[J]. 化工学报, 2023, 74(5): 2013-2021. |
[12] | 张永泉, 玄伟伟. 碱金属/(FeO+CaO+MgO)对硅酸盐灰熔渣结构和黏度的影响机理[J]. 化工学报, 2023, 74(4): 1764-1771. |
[13] | 刘海芹, 李博文, 凌喆, 刘亮, 俞娟, 范一民, 勇强. 羟基-炔点击化学改性半乳甘露聚糖薄膜的制备及性能研究[J]. 化工学报, 2023, 74(3): 1370-1378. |
[14] | 祖凌鑫, 胡荣庭, 李鑫, 陈余道, 陈广林. 木质生物质化学组分的碳释放产物特征和反硝化利用程度[J]. 化工学报, 2023, 74(3): 1332-1342. |
[15] | 郑杰元, 张先伟, 万金涛, 范宏. 丁香酚环氧有机硅树脂的制备及其固化动力学研究[J]. 化工学报, 2023, 74(2): 924-932. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||