化工学报 ›› 2022, Vol. 73 ›› Issue (5): 2242-2250.doi: 10.11949/0438-1157.20211775
徐劲松1(),林敏2,陈晓平1(
),马吉亮1,耿鹏飞1,鲍学兵1,刘道银1,梁财1
Jinsong XU1(),Min LIN2,Xiaoping CHEN1(
),Jiliang MA1,Pengfei GENG1,Xuebing BAO1,Daoyin LIU1,Cai LIANG1
摘要:
废酸流化床法再生技术可高效回收酸和金属离子,具有广阔的应用前景。利用自行搭建的流化床热态实验装置,并结合SEM、离子色谱和XPS等表征手段研究了密相区温度、初始床料粒径对废混酸(HNO3+HF)中酸与金属离子再生回收特性的影响规律。结果表明:流化床法可有效实现废混酸中酸和金属元素再生回收,金属氧化物在床料表面附着量随流化床密相区温度的升高而增加,850℃时达到峰值,继续升温后附着量小幅降低,同时增大床料初始粒径,金属氧化物在床料表面附着量将大幅提高;NO x 、HF生成量随流化床密相区温度的升高而增加,750℃时达到峰值,继续升温后大幅回落,同时随着床料初始粒径增大,NO x 生成量将小幅降低,而HF生成量峰值对应的密相区温度变化到800℃。
中图分类号:
1 | 程玲俐. 不锈钢冷带退火酸洗的工艺及设备的研究[D]. 上海: 上海交通大学, 2008. |
Cheng L L. Study on process and equipment of annealing and pickling for cold-rolled stainless strip[D]. Shanghai: Shanghai Jiao Tong University, 2008. | |
2 | 刘鹏. 基于生命周期评价的废盐酸再生工艺比较研究[D]. 大连: 大连理工大学, 2015. |
Liu P. Comparison of waste hydrochloric acid regeneration technologies based on LCA[D]. Dalian: Dalian University of Technology, 2015. | |
3 | 代秀芝. 不锈钢酸洗废混酸回收工艺[J]. 冶金设备, 2013(S1):69-71. |
Dai X Z. Technology of waste mixed acid recovery in stainless steel pickling[J]. Metallurgical Equipment, 2013(S1): 69-71. | |
4 | 朱冰. 不锈钢酸洗废水中金属离子的资源化分离回收工艺研究[D]. 重庆: 重庆大学, 2018. |
Zhu B. Recycling and recovery of metal ions from spent steel pickling wastewater[D]. Chongqing: Chongqing University, 2018. | |
5 | 曹明义, 何国凯, 刘万涛. 钢铁酸洗废水资源化处理技术综述[J]. 冶金动力, 2020, 39(10): 55-56, 71. |
Cao M Y, He G K, Liu W T. Review on resource treatment technology of steel pickling wastewater[J]. Metallurgical Power, 2020, 39(10): 55-56, 71. | |
6 | 于丹. 盐酸废液流化床法再生工艺的应用[J]. 天津冶金, 2014(S1):141-144. |
Yu D. Application of the process of hydrochloric acid regeneration with fluidized bed method[J]. Tianjin Metallurgy, 2014(S1): 141-144. | |
7 | Negro C, Blanco M A, López-Mateos F, et al. Free acids and chemicals recovery from stainless steel pickling baths[J]. Separation Science and Technology, 2001, 36(7): 1543-1556. |
8 | 别如山, 李炳熙, 陆慧林, 等. 处理高浓度有机废水流化床焚烧炉[J]. 锅炉制造, 2000(1): 40-44. |
Bie R S, Li B X, Lu H L,et al. CFB boiler for handling high consistency organic waste water[J]. Boiler Manufacturing, 2000(1):40-44. | |
9 | 王超. 不锈钢酸洗废酸回收[J]. 天津冶金, 2016(1): 56-59. |
Wang C. Recovery of waste acid for stainless steel pickling[J]. Tianjin Metallurgy, 2016(1): 56-59. | |
10 | 王贵喜, 任艳平, 何宗健. 不锈钢酸洗混合废酸(HNO3-HF)的回收以及离子交换法在其纯化中的应用[J]. 江西化工, 2010(1):138-141. |
Wang G X, Ren Y P, He Z J. Recovery of stainless steel pickling mixed waste acid (HNO3-HF) and the application of ion exchange in its purification[J]. Jiangxi Chemical Industry, 2010(1): 138-141. | |
11 | 高健. 探讨离子交换树脂在水处理中的应用[J]. 皮革制作与环保科技, 2022, 3(2): 10-12. |
Gao J. Discuss the application of ion exchange resin in water treatment[J]. Leather Manufacture and Environmental Technology, 2022, 3(2): 10-12. | |
12 | 李菲, 赵俊学, 马红周, 等. 用强酸性阳离子交换树脂从不锈钢酸洗废水中富集铬[J]. 湿法冶金, 2011, 30(1): 71-73. |
Li F, Zhao J X, Ma H Z, et al. Enrichment of chromium from stainless steel pickling wastewater by strong acidic cation ion-exchange resin[J]. Hydrometallurgy of China, 2011, 30(1): 71-73. | |
13 | 李菲, 赵俊学, 马红周, 等. 用强酸性阳离子交换树脂分离不锈钢酸洗废水中的铁[J]. 湿法冶金, 2011, 30(2): 155-158. |
Li F, Zhao J X, Ma H Z, et al. Separation of iron from stainless steel pickling wastewater by strong acidic cation ion-exchange resin[J]. Hydrometallurgy of China, 2011, 30(2): 155-158. | |
14 | 李小明, 李文锋, 王尚杰, 等. 不锈钢酸洗废液的处理与回收技术综述[J]. 化工环保, 2012, 32(6): 511-515. |
Li X M, Li W F, Wang S J, et al. Review of treatment and recovery technologies of waste stainless steel pickling liquor[J]. Environmental Protection of Chemical Industry, 2012, 32(6): 511-515. | |
15 | 曾彬. 不锈钢蚀刻废液的综合回收利用[J]. 低碳世界, 2021, 11(3): 6-7. |
Zeng B. Comprehensive recycling of stainless steel etching waste liquor[J]. Low Carbon World, 2021, 11(3): 6-7. | |
16 | 赫红超. 钢铁酸洗废液处理技术研究[D]. 上海: 上海应用技术大学, 2021. |
He H C.Study on treatment technology of steel pickling waste liquid [D]. Shanghai: Shanghai Institute of Technology, 2021. | |
17 | 戴丽萍,朱汉权,柯雄,等. 双极膜电渗析法去除水溶液中Cr(Ⅵ)[J]. 环境工程, 2021, 39(11): 89-95. |
Dai L P, Zhu H Q, Ke X,et al. Removal of hexavalent chromium from aqueous solution using bipolar membrane electrodialysis technique[J].Environmental Engineering, 2021, 39(11): 89-95. | |
18 | 朱桂平, 郭合理, 周兵. 流化床法废盐酸再生技术在钢丝绳行业的应用[J]. 金属制品, 2013, 39(4): 47-50. |
Zhu G P, Guo H L, Zhou B. Application of fluidized bed waste hydrochloric acid regeneration technology in wire rope industry[J]. Metal Products, 2013, 39(4): 47-50. | |
19 | Nandy T, Vyas R D, Kaul S N, et al. Recovery of value-added chemicals from hazardous waste pickle liquor through application of full-scale fluidized bed reactor system[J]. Environmental Engineering Science, 2001, 18(6): 329-336. |
20 | Regel-Rosocka M. A review on methods of regeneration of spent pickling solutions from steel processing[J]. Journal of Hazardous Materials, 2010, 177(1/2/3): 57-69. |
21 | 徐向东, 蔡恒君, 杨伟. 鞍钢联众不锈钢混酸再生技术改进[J]. 鞍钢技术, 2017(6): 58-61. |
Xu X D, Cai H J, Yang W. Improvement of recycling technology for waste mixed acid produced by manufacturing stainless steel in ansteel LISCO steel[J]. Angang Technology, 2017(6): 58-61. | |
22 | Melnikov P, Nascimento V A, Arkhangelsky I V, et al. Thermolysis mechanism of chromium nitrate nonahydrate and computerized modeling of intermediate products[J]. Journal of Thermal Analysis and Calorimetry, 2013, 114(3): 1021-1027. |
23 | Yuvaraj S, Lin F Y, Tsong-Huei C, et al. Thermal decomposition of metal nitrates in air and hydrogen environments[J]. The Journal of Physical Chemistry B, 2003, 107(4): 1044-1047. |
24 | Ge Y, Fan L S. Droplet-particle collision mechanics with film-boiling evaporation[J]. Journal of Fluid Mechanics, 2007, 573: 311-337. |
25 | Hatta N, Fujimoto H, Kinoshita K, et al. Experimental study of deformation mechanism of a water droplet impinging on hot metallic surfaces above the leidenfrost temperature[J]. Journal of Fluids Engineering, 1997, 119(3): 692-699. |
26 | Christoph L K, Schlünder E U. Fluidized bed spray granulation: investigation of the coating process on a single sphere[J]. Chemical Engineering and Processing: Process Intensification, 1997, 36(6): 443-457. |
27 | 段然. 大颗粒流化床水泥熟料煅烧工艺热模试验研究[D]. 西安: 西安建筑科技大学, 2008. |
Duan R. An investigation into the calcination of cement clinker by coarse particles fluidization-thermo dynamics of the calcination process[D]. Xi'an: Xi'an University of Architecture and Technology, 2008. | |
28 | 齐庆杰, 刘建忠, 曹欣玉, 等. 燃煤过程中CaO对氟析出的固定作用[J]. 燃料化学学报, 2002, 30(3): 204-208. |
Qi Q J, Liu J Z, Cao X Y, et al. Restraining of fluoride emission by blending CaO or lime with coal during coal combustion[J]. Journal of Fuel Chemistry and Technology, 2002, 30(3): 204-208. | |
29 | 齐庆杰, 刘建忠, 周俊虎, 等. 燃煤过程中CaO及钙基固氟剂对氟析出的控制[J]. 化工学报, 2003, 54(2): 226-231. |
Qi Q J, Liu J Z, Zhou J H, et al.Fluoride emission control by blending and injecting CaO and calcium-based sorbents during coal combustion[J]. Journal of Chemical Industry and Engineering (China), 2003, 54(2): 226-231. | |
30 | Li W H, Ma Z Y, Yan J H, et al. Evolution and distribution characteristics of fluorine during the incineration of fluorine-containing waste in a hazardous waste incinerator[J]. Journal of Zhejiang University-SCIENCE A, 2019, 20(8): 564-576. |
31 | 李文瀚. 危险废物焚烧过程中重金属与氟的迁移转化及污染控制机理研究[D]. 杭州: 浙江大学, 2020. |
Li W H. Mechanism study on the transfer and pollution control of heavy metals and fluorine in the incineration of hazardous wastes[D]. Hangzhou: Zhejiang University, 2020. | |
32 | 高强. MgO和Al2O3基固氟剂的制备及NF3分解反应[D]. 烟台: 烟台大学, 2021. |
Gao Q. The preparation of MgO- and Al2O3-based fluorine-fixed reagents for NF3 decomposition[D]. Yantai: Yantai University, 2021. | |
33 | 李舒伶, 齐庆杰, 刘建忠, 等. 煤燃烧固氟剂及固氟效果研究[J]. 环境科学, 2004, 25(2): 174-176. |
Li S L, Qi Q J, Liu J Z, et al. Study on the calcium-based sorbent for removal fluorine during coal combustion[J]. Environmental Science, 2004, 25(2): 174-176. | |
34 | 刘建忠, 齐庆杰, 盛军杰, 等. 燃煤高温固氟工艺和添加剂的实验研究[J]. 中国电机工程学报, 2004, 24(7): 227-230. |
Liu J Z, Qi Q J, Sheng J J, et al. Experimental study on fluorine retention process and additive under high temperation during coal combustion[J]. Proceedings of the CSEE, 2004, 24(7): 227-230. | |
35 | 刘静, 向轶, 刘建忠. 有机钙燃煤固氟剂的固氟效果和表面形态研究[J]. 热力发电, 2020, 49(2): 65-70. |
Liu J, Xiang Y, Liu J Z. Study on fluorine removal efficiency and surface morphology of organic calcium fluorine removal additive for coal combustion[J]. Thermal Power Generation, 2020, 49(2): 65-70. |
[1] | 袁子涵, 王淑彦, 邵宝力, 谢磊, 陈曦, 马一玫. 基于幂律液固曳力模型流化床内湿颗粒流动特性的研究[J]. 化工学报, 2023, 74(5): 2000-2012. |
[2] | 陈瑞哲, 程磊磊, 顾菁, 袁浩然, 陈勇. 纤维增强树脂复合材料化学回收技术研究进展[J]. 化工学报, 2023, 74(3): 981-994. |
[3] | 潘煜, 王子航, 王佳韵, 王如竹, 张华. 基于可得然-氯化锂复合吸附剂的除湿换热器热湿性能研究[J]. 化工学报, 2023, 74(3): 1352-1359. |
[4] | 黄宽, 马永德, 蔡镇平, 曹彦宁, 江莉龙. 油脂催化加氢转化制备第二代生物柴油研究进展[J]. 化工学报, 2023, 74(1): 380-396. |
[5] | 鲁文静, 李先锋. 液流电池多孔离子传导膜研究进展[J]. 化工学报, 2023, 74(1): 192-204. |
[6] | 朱莲峰, 王超, 张梦娟, 刘方正, 贾鑫, 安萍, 许光文, 韩振南. 水蒸气/氧流化床两段煤气化制备低焦油合成气工艺实验[J]. 化工学报, 2022, 73(8): 3720-3730. |
[7] | 张东旺, 杨海瑞, 周托, 黄中, 李诗媛, 张缦. 生物质锅炉对流受热面积灰冷态模拟实验研究[J]. 化工学报, 2022, 73(8): 3731-3738. |
[8] | 刘新华, 韩振南, 韩健, 梁斌, 张楠, 胡善伟, 白丁荣, 许光文. 基于热解与燃烧反应重构的低NO x 解耦燃烧原理与技术[J]. 化工学报, 2022, 73(8): 3355-3368. |
[9] | 王刚, 夏志豪, 李希艳, 张虹, 韩振南, 宋兴飞, 许光文. 不同气氛下流化床菱镁矿轻烧产物特性研究[J]. 化工学报, 2022, 73(8): 3699-3707. |
[10] | 王凯玥, 马永丽, 李琛, 刘明言. 气液固微型流化床的气液传质系数[J]. 化工学报, 2022, 73(8): 3529-3540. |
[11] | 陈永安, 周安宁, 李云龙, 石智伟, 贺新福, 焦卫红. 磁性MgFe2O4及其核壳催化剂制备与煤热解性能研究[J]. 化工学报, 2022, 73(7): 3026-3037. |
[12] | 李彬, 宋文明, 杨坤龙, 姜爽, 张天永. 水系有机液流电池活性材料的分子工程研究进展[J]. 化工学报, 2022, 73(7): 2806-2818. |
[13] | 牛犁, 刘梦溪, 王海北. 密相流化床中介尺度流动结构的流体力学特性研究[J]. 化工学报, 2022, 73(6): 2622-2635. |
[14] | 马永丽, 刘明言, 胡宗定. 气液固流化床流动介尺度模型研究进展[J]. 化工学报, 2022, 73(6): 2438-2451. |
[15] | 范小强, 黄正梁, 孙婧元, 王靖岱, 王晓飞, 胡晓波, 韩国栋, 阳永荣, 吴文清. 气液法流化床乙烯云聚合工艺开发及产品高性能化[J]. 化工学报, 2022, 73(6): 2742-2747. |
|