化工学报 ›› 2022, Vol. 73 ›› Issue (9): 4187-4193.DOI: 10.11949/0438-1157.20220484
收稿日期:
2022-04-05
修回日期:
2022-05-27
出版日期:
2022-09-05
发布日期:
2022-10-09
通讯作者:
孙芳
作者简介:
鞠小兵(1995—),男,硕士研究生,xiaobingju@163.com
基金资助:
Xiaobing JU1(), Xuechun LI1, Fang SUN1,2()
Received:
2022-04-05
Revised:
2022-05-27
Online:
2022-09-05
Published:
2022-10-09
Contact:
Fang SUN
摘要:
设计、合成了一种二硫代水杨酸衍生物(MAPBS),详细研究了MAPBS对丙烯酸酯类单体光聚合动力学及其聚合物膜体积收缩、耐热性能及硬度的影响。研究结果表明,在365 nm LED光源照射下,MAPBS能够引发甲基丙烯酸酯类单体聚合和降低聚合物膜体积收缩。随着MAPBS含量的增加,光聚合体系的双键转化率和聚合速率随之增加,分别达到64.9%和1.19%/s,而体积收缩呈现先降低再增加的趋势,聚合物膜热稳定性略微降低,硬度略有增加。MAPBS兼具引发和降低体积收缩的双重功能,在LED光聚合体系表现出一定的应用潜力。
中图分类号:
鞠小兵, 李雪纯, 孙芳. 二硫代水杨酸衍生物对光固化材料性能的影响[J]. 化工学报, 2022, 73(9): 4187-4193.
Xiaobing JU, Xuechun LI, Fang SUN. Effect on dithiosalicylic acid derivative on properties of photocuring materials[J]. CIESC Journal, 2022, 73(9): 4187-4193.
波长/nm | 摩尔消光系数(ε)/(L/(mol·cm)) |
---|---|
220 | 35700 |
250 | 16970 |
312 | 8380 |
365 | 30 |
385 | 0 |
表1 MAPBS的摩尔消光系数(ε)
Table 1 Molar extinction coefficients (ε) of MAPBS
波长/nm | 摩尔消光系数(ε)/(L/(mol·cm)) |
---|---|
220 | 35700 |
250 | 16970 |
312 | 8380 |
365 | 30 |
385 | 0 |
图3 无水乙腈溶液中MAPBS在365 nm LED点光源照射后的ESR谱图及其拟合谱图(捕捉剂:PBN)
Fig.3 ESR spectrum of MAPBS in anhydrous acetonitrile solution after irradiation with 365 nm LED point light source and its fitted spectrum (the capture agent: PBN)
图4 在阻氧条件下MAPBS和CQ/ DMAEMA引发单体的光聚合动力学(365 nm LED,光照强度:100 mW/cm2)
Fig.4 Photopolymerization kinetics of monomers initiated by MAPBS and CQ/ DMAEMA in the absence of oxygen (365 nm LED, light intensity: 100 mW/cm2)
体系 | MAPBS含量/ %(质量分数) | T5%/℃ | Tmax1/℃ | Tmax2/℃ |
---|---|---|---|---|
MAPBS-0% | 0 | 292.7 | 343.4 | 422.6 |
MAPBS-2.5% | 2.5 | 279.3 | 322.4 | 438.0 |
MAPBS-5.0% | 5.0 | 278.2 | 319.0 | 434.8 |
MAPBS-7.5% | 7.5 | 278.0 | 313.1 | 431.2 |
MAPBS-10.0% | 10.0 | 278.1 | 310.5 | 429.4 |
表2 MAPBS体系固化膜的热失重数据
Table 2 Thermogravimetric data of polymer films with MAPBS
体系 | MAPBS含量/ %(质量分数) | T5%/℃ | Tmax1/℃ | Tmax2/℃ |
---|---|---|---|---|
MAPBS-0% | 0 | 292.7 | 343.4 | 422.6 |
MAPBS-2.5% | 2.5 | 279.3 | 322.4 | 438.0 |
MAPBS-5.0% | 5.0 | 278.2 | 319.0 | 434.8 |
MAPBS-7.5% | 7.5 | 278.0 | 313.1 | 431.2 |
MAPBS-10.0% | 10.0 | 278.1 | 310.5 | 429.4 |
9 | Wang Y J, Alonso J M, Ruan X. A review of LED drivers and related technologies[J]. IEEE Transactions on Industrial Electronics, 2017, 64(7): 5754-5765. |
10 | Castro I, Vazquez A, Arias M, et al. A review on flicker-free AC-DC LED drivers for single-phase and three-phase AC power grids[J]. IEEE Transactions on Power Electronics, 2019, 34(10): 10035-10057. |
11 | Zhu Y, Wang B W, Li Z Y, et al. A high-efficiency wavelength-tunable monolayer LED with hybrid continuous-pulsed injection[J]. Advanced Materials, 2021, 33(29): 1-9. |
12 | Sun C C, Ma S H, Nguyen Q K. Advanced LED solid-state lighting optics[J]. Crystals, 2020, 10(9): 1-3. |
13 | Pulli T, Dönsberg T, Poikonen T, et al. Advantages of white LED lamps and new detector technology in photometry[J]. Light: Science and Applications, 2015, 4: 1-7. |
14 | Pagac M, Hajnys J, Ma Q P, et al. A review of vat photopolymerization technology: materials, applications, challenges, and future trends of 3D printing[J]. Polymers, 2021, 13(4): 1-20. |
15 | Peng X, Zhu D, Xiao P. Naphthoquinone derivatives: naturally derived molecules as blue-light-sensitive photoinitiators of photopolymerization[J]. European Polymer Journal, 2020, 127:109569. |
16 | Tang L Q, Nie J, Zhu X Q. A high performance phenyl-free LED photoinitiator for cationic or hybrid photopolymerization and its application in LED cationic 3D printing[J]. Polymer Chemistry, 2020, 11(16): 2855-2863. |
17 | Romanyk D L, Yu H, Grotski M, et al. In situ measurement of dental resin-based composite volumetric shrinkage and temperature effects using in-fibre bragg grating methods[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 95: 89-95. |
18 | Jongsma L A, Kleverlaan C J. Influence of temperature on volumetric shrinkage and contraction stress of dental composites[J]. Dental Materials, 2015, 31(6): 721-725. |
19 | Koseki K, Sakamaki H, Jeong K M. In situ measurement of shrinkage behavior of photopolymers[J]. Journal of Photopolymer Science and Technology, 2013, 26(4): 57-572. |
20 | Stansbury J W, Trujillo-Lemon M, Lu H, et al. Conversion-dependent shrinkage stress and strain in dental resins and composites[J]. Dental Materials, 2005, 21(1): 56-67. |
21 | Alster D, Feilzer A J, de Gee A J, et al. Polymerization contraction stress in thin resin composite layers as a function of layer thickness[J]. Dental Materials, 1997, 13(3): 146-150. |
22 | Zhang W, Dong H N, Zhang T, et al. The effect of monomer structures on photopolymerization kinetics and volume shrinkage behavior for plasma display panel barrier rib[J]. Journal of Applied Polymer Science, 2012, 125(1): 77-87. |
1 | Dietlin C, Trinh T T, Schweizer S, et al. Rational design of acyldiphenylphosphine oxides as photoinitiators of radical polymerization[J]. Macromolecules, 2019, 52(20): 7886-7893. |
2 | Nohut S, Schwentenwein M. Vat photopolymerization additive manufacturing of functionally graded materials: a review[J]. Journal of Manufacturing and Materials Processing, 2022, 6(1): 1-24. |
3 | Sun K, Xiao P, Dumur F, et al. Organic dye-based photoinitiating systems for visible-light-induced photopolymerization[J]. Journal of Polymer Science, 2021, 59: 1338-1389. |
4 | Layani M, Wang X, Magdassi S. Novel materials for 3D printing by photopolymerization[J]. Advanced Materials, 2018, 30(41): 1-7. |
5 | Xiong P, Hu J Y. Decomposition of acetaminophen (Ace) using TiO2/UVA/LED system[J]. Catalysis Today, 2017, 282: 48-56. |
6 | Selin H, Keane S E, Wang S, et al. Linking science and policy to support the implementation of the minamata convention on mercury[J]. Ambio, 2018, 47(2): 198-215. |
7 | Coulter M A. Minamata convention on mercury[J]. International Legal Materials, 2016, 55(3): 582-616. |
8 | Jo W K, Tayade R J. New generation energy-efficient light source for photocatalysis: LEDs for environmental applications[J]. Industrial & Engineering Chemistry Research, 2014, 53(6): 2073-2084. |
23 | Chen C, Han J Y, Sun F. Gradient polymer networks formed by photopolymerization with self-floating polysiloxane-containing nanogel[J]. Polymers for Advanced Technologies, 2017, 28(3): 312-318. |
24 | Han J Y, Jiang S L, Gao Y J, et al. Intramolecular-initiating photopolymerization behavior of nanogel with capability of reducing shrinkage[J]. Journal of Materials Chemistry C, 2016, 4(45): 10675-10683. |
25 | Chen C, Li M, Gao Y, et al. A study of nanogels with different polysiloxane chain lengths for photopolymerization stress reduction and modification of polymer networks properties[J]. RSC Advances, 2015, 5(43): 33729-33736. |
26 | Chen J T, Jiang S L, Gao Y J, et al. Reducing volumetric shrinkage of photopolymerizable materials using reversible disulfide bond reactions[J]. Journal of Materials Science, 2018, 53(23): 16169-16181. |
27 | Zhang M L, Jiang S L, Gao Y J, et al. Design of a disulfide bond-containing photoresist with extremely low volume shrinkage and excellent degradation ability for UV-nanoimprinting lithography[J]. Chemical Engineering Journal, 2020, 390: 124625. |
28 | Zhang M L, Jiang S L, Gao Y J, et al. UV-nanoimprinting lithography photoresists with no photoinitiator and low polymerization shrinkage[J]. Industrial & Engineering Chemistry Research, 2020, 59(16): 7564-7574. |
29 | Tehfe M A, Mondal S, Nechab M, et al. New thiols for photoinitiator-free thiol-acrylate polymerization[J]. Macromolecular Chemistry and Physics, 2013, 214(12): 1302-1308. |
30 | Buettner G R. Spin Trapping: ESR parameters of spin adducts 1474 1528V[J]. Free Radical Biology and Medicine, 1987, 3(4): 259-303. |
[1] | 王琪, 张斌, 张晓昕, 武虎建, 战海涛, 王涛. 氯铝酸-三乙胺离子液体/P2O5催化合成伊索克酸和2-乙基蒽醌[J]. 化工学报, 2023, 74(S1): 245-249. |
[2] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[3] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[4] | 李彬, 徐正虎, 姜爽, 张天永. 双氧水催化氧化法清洁高效合成促进剂CBS[J]. 化工学报, 2023, 74(7): 2919-2925. |
[5] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[6] | 张澳, 罗英武. 低模量、高弹性、高剥离强度丙烯酸酯压敏胶[J]. 化工学报, 2023, 74(7): 3079-3092. |
[7] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[8] | 刘杰, 吴立盛, 李锦锦, 罗正鸿, 周寅宁. 含乙烯基胺酯键聚醚类可逆交联聚合物的制备及性能研究[J]. 化工学报, 2023, 74(7): 3051-3057. |
[9] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
[10] | 龙臻, 王谨航, 任俊杰, 何勇, 周雪冰, 梁德青. 离子液体协同PVCap抑制天然气水合物生成实验研究[J]. 化工学报, 2023, 74(6): 2639-2646. |
[11] | 杨琴, 秦传鉴, 李明梓, 杨文晶, 赵卫杰, 刘虎. 用于柔性传感的双形状记忆MXene基水凝胶的制备及性能研究[J]. 化工学报, 2023, 74(6): 2699-2707. |
[12] | 张建华, 陈萌萌, 孙雅雯, 彭永臻. 部分短程硝化同步除磷耦合Anammox实现生活污水高效脱氮除磷[J]. 化工学报, 2023, 74(5): 2147-2156. |
[13] | 葛泽峰, 吴雨青, 曾名迅, 查振婷, 马宇娜, 侯增辉, 张会岩. 灰化学成分对生物质气化特性的影响规律[J]. 化工学报, 2023, 74(5): 2136-2146. |
[14] | 陈韶云, 徐东, 陈龙, 张禹, 张远方, 尤庆亮, 胡成龙, 陈建. 单层聚苯胺微球阵列结构的制备及其吸附性能[J]. 化工学报, 2023, 74(5): 2228-2238. |
[15] | 龙臻, 王谨航, 何勇, 梁德青. 离子液体与动力学抑制剂作用下混合气体水合物生成特性研究[J]. 化工学报, 2023, 74(4): 1703-1711. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 70
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 189
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||