化工学报 ›› 2022, Vol. 73 ›› Issue (7): 2858-2864.doi: 10.11949/0438-1157.20220486

• 流体力学与传递现象 • 上一篇    下一篇

旋风分离器内气相旋转流不稳定性的实验研究

宋健斐1(),孙立强2,解明2,魏耀东1   

  1. 1.中国石油大学(北京)机械与储运工程学院,北京 102249
    2.河北石油职业技术大学河北省流体测控仪表工程实验室,河北 承德 067000
  • 收稿日期:2022-04-06 修回日期:2022-06-23 出版日期:2022-07-05 发布日期:2022-08-01
  • 通讯作者: 宋健斐 E-mail:songjf@cup.edu.cn
  • 作者简介:宋健斐(1979—),女,博士,副教授, songjf@cup.edu.cn
  • 基金资助:
    国家自然科学基金项目(22178382);河北省自然科学基金项目(B2021411001)

Experimental study of instability of gas-phase swirling flow in cyclone

Jianfei SONG1(),Liqiang SUN2,Ming XIE2,Yaodong WEI1   

  1. 1.College of Mechanical and Transportation Engineering, China University of Petroleum, Beijing 102249, China
    2.Hebei Engineering Laboratory of Fluid Measurement and Control, Hebei Petroleum University of Technology, Chengde 067000, Hebei, China
  • Received:2022-04-06 Revised:2022-06-23 Published:2022-07-05 Online:2022-08-01
  • Contact: Jianfei SONG E-mail:songjf@cup.edu.cn

摘要:

旋风分离器内气相旋转流具有较强的不稳定性,其表现形式是旋转流的旋转中心围绕几何中心的偏心摆动,导致流场的瞬时速度随时间发生脉动变化。这种旋流的不稳定特性难以用时均流场参数进行描述,需要用动态流场参数描述,为此采用热线风速仪测量了?300 mm旋风分离器内瞬时切向速度随时间的变化。实验结果表明瞬时切向速度是由气体湍流形成的高频脉动和旋转流偏心摆动形成的低频脉动两部分叠加构成,据此探讨了旋转流摆动形成的机制。瞬时切向速度的低频脉动来源于刚性涡的偏心摆动,脉动幅值与偏心距成正比。通过瞬时切向速度频域建立了旋转流的摆动频率与入口速度、筒体直径和排气管直径的计算模型。

关键词: 旋风分离器, 旋转流, 瞬时切向速度, 不稳定性, 摆动频率

Abstract:

The gas-phase swirling flow in the cyclone has strong instability, which is manifested in the eccentric swing of the rotational center of the swirling center around the geometric center, which causes the instantaneous velocity of the flow field to fluctuate with time. It is not accurate to describe the instability characteristics of this swirling flow with time averaged flow field parameters, which need to be described with dynamic flow field parameters. Therefore, the instantaneous tangential velocity in ?300 mm cyclone was measured by hot wire/film anemometer. The results show that the instantaneous tangential velocity is the superposition of high-frequency pulsation formed by gas turbulence and low-frequency pulsation formed by eccentric swing of swirling flow. Based on this, the formation mechanism of swing of swirling flow was discussed. The low-frequency fluctuation of instantaneous tangential velocity comes from the eccentric swing of forced vortex, and the fluctuation amplitude is proportional to the eccentricity. According to the frequency domain of instantaneous tangential velocity, the calculation model of swing frequency related to the inlet velocity, cylinder diameter and vortex finder diameter of swirling flow was established.

Key words: cyclone, swirling flow, instantaneous tangential velocity, instability characteristics, swing frequency

中图分类号: 

  • TQ 051.8

图1

旋风分离器流场测量装置1—计算机;2—IFA300热线/热膜风速仪;3—HWA探针;4—旋风分离器;5—皮托管;6—阀门;7—风机;8—电机"

图2

旋风分离器内的瞬时切向速度(dr=110 mm)"

图3

旋风分离器内的瞬时切向速度(z=370 mm)"

图4

旋风分离器内时均切向速度分布"

图5

旋转流摆动对切向速度脉动的影响"

图6

瞬时切向速度的频谱分析(dr=110 mm)"

图7

测点 r/R=0.12瞬时切向速度频谱分析"

图8

旋风分离器内气流的偏心旋转"

图9

实验和模型计算的摆动主频"

1 胡𬍛元, 时铭显. 蜗壳式旋风分离器全空间三维时均流场的结构[J]. 化工学报, 2003, 54(4): 549-556.
Hu L Y, Shi M X. Three-dimensional time-averaged flow structure in cyclone separator with volute inlet[J]. Journal of Chemical Industry and Engineering (China), 2003, 54(4): 549-556.
2 Hoekstra A J, Derksen J J, van den Akker H E A. An experimental and numerical study of turbulent swirling flow in gas cyclones[J]. Chemical Engineering Science, 1999, 54(13/14): 2055-2065.
3 Hu L Y, Zhou L X, Zhang J, et al. Studies on strongly swirling flows in the full space of a volute cyclone separator[J]. AIChE Journal, 2005, 51(3): 740-749.
4 Hoffmann A C, Stein L E. Gas Cyclones and Swirl Tubes: Principles, Design and Operation[M]. Berlin: Springer-Verlag, 2002.
5 Cortés C, Gil A. Modeling the gas and particle flow inside cyclone separators[J]. Progress in Energy and Combustion Science, 2007, 33(5): 409-452.
6 蔡香丽, 杨智勇, 王菁, 等. 旋风分离器气相旋转流流场动态特性的研究进展[J]. 化工进展, 2019, 38(11): 4805-4814.
Cai X L, Yang Z Y, Wang J, et al. Research progress on dynamic characteristics of swirling flow in a cyclone[J]. Chemical Industry and Engineering Progress, 2019, 38(11): 4805-4814.
7 Dong S J, Jiang Y C, Jin R Z, et al. Numerical study of vortex eccentricity in a gas cyclone[J]. Applied Mathematical Modelling, 2020, 80: 683-701.
8 Derksen J J, van den Akker H E A. Simulation of vortex core precession in a reverse-flow cyclone[J]. AIChE Journal, 2000, 46(7): 1317-1331.
9 高助威, 王娟, 王江云, 等. 旋风分离器内涡核摆动的特性研究[J]. 工程热物理学报, 2017, 38(12): 2610-2618.
Gao Z W, Wang J, Wang J Y, et al. Study of the characteristics of vortex core oscillation in cyclone separator[J]. Journal of Engineering Thermophysics, 2017, 38(12): 2610-2618.
10 宋健斐, 魏耀东, 时铭显. 蜗壳式旋风分离器内气相流场非轴对称特性分析[J]. 化工学报, 2007, 58(5): 1091-1096.
Song J F, Wei Y D, Shi M X. Analysis of asymmetry of gas-phase flow field in volute cyclone[J]. Journal of Chemical Industry and Engineering (China), 2007, 58(5): 1091-1096.
11 Sun L Q, Wang D, Song J F, et al. Experimental study of gas swirling flow instability characteristics in a cyclone using the hot-wire anemometry technique[J]. AIChE Journal, 2020, 66(1): e16759.
12 蔡香丽, 杨智勇, 马玉苗, 等. 旋风分离器内旋转流湍流特性的实验分析[J]. 石油学报(石油加工), 2015, 31(4): 983-990.
Cai X L, Yang Z Y, Ma Y M, et al. Experimental analysis of turbulence characteristics of swirling flow in cyclone[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2015, 31(4): 983-990.
13 王甜, 徐俊, 宋健斐, 等. 旋风分离器内旋转流的不稳定性[J]. 化工学报, 2010, 61(2): 317-322.
Wang T, Xu J, Song J F, et al. Instability of swirling flow in cyclone[J]. CIESC Journal, 2010, 61(2): 317-322.
14 Sun L Q, Song J F, Wang D, et al. An experimental investigation on gas flow field dynamic characteristics in a reverse cyclone[J]. Chemical Engineering Research and Design, 2020, 160: 52-62.
15 He M Y, Zhang Y H, Ma L, et al. Study on flow field characteristics in a reverse rotation cyclone with PIV[J]. Chemical Engineering and Processing - Process Intensification, 2018, 126: 100-107.
16 Yang J X, Dong Z Z, Shen C, et al. Analysis of effect of radial confluence flow on vortex core motion[J]. Powder Technology, 2019, 356: 871-879.
17 王璐, 张兴芳, 董振洲, 等. 旋风分离器入口形式对内流场非稳态特性的影响[J]. 化工学报, 2018, 69(8): 3488-3501.
Wang L, Zhang X F, Dong Z Z, et al. Effect of inlet structure on transient properties of gas flow in cyclone separator[J]. CIESC Journal, 2018, 69(8): 3488-3501.
18 Zhang P, Chen G H, Wang W W, et al. Analysis of the nutation and precession of the vortex core and the influence of operating parameters in a cyclone separator[J]. Chinese Journal of Chemical Engineering, 2022, 46: 1-10.
19 Brar L S, Derksen J J. Revealing the details of vortex core precession in cyclones by means of large-eddy simulation[J]. Chemical Engineering Research and Design, 2020, 159: 339-352.
20 Brar L S, Elsayed K. Analysis and optimization of multi-inlet gas cyclones using large eddy simulation and artificial neural network[J]. Powder Technology, 2017, 311: 465-483.
21 吴小林, 熊至宜, 姬忠礼, 等. 旋风分离器旋进涡核的数值模拟[J]. 化工学报, 2007, 58(2): 383-390.
Wu X L, Xiong Z Y, Ji Z L, et al. Numerical simulation of precessing vortex core in cyclone separator[J]. Journal of Chemical Industry and Engineering (China), 2007, 58(2): 383-390.
22 Gupta A K, Lilley D J, Syred N. Swirl Flows[M]. Tunbridge Wells, UK: Abacus Press, 1984.
23 Elsayed K, Lacor C. The effect of cyclone vortex finder dimensions on the flow pattern and performance using LES[J]. Computers & Fluids, 2013, 71: 224-239.
24 Parvaz F, Hosseini S H, Ahmadi G, et al. Impacts of the vortex finder eccentricity on the flow pattern and performance of a gas cyclone[J]. Separation and Purification Technology, 2017, 187: 1-13.
25 El-Batsh H M. Improving cyclone performance by proper selection of the exit pipe[J]. Applied Mathematical Modelling, 2013, 37(7): 5286-5303.
26 Zhao Q, Cui B Y, Wei D Z, et al. Numerical analysis of the flow field and separation performance in hydrocyclones with different vortex finder wall thickness[J]. Powder Technology, 2019, 345: 478-491.
27 Zhang Z W, Li Q, Zhang Y H, et al. Simulation and experimental study of effect of vortex finder structural parameters on cyclone separator performance[J]. Separation and Purification Technology, 2022, 286: 120394.
28 Gao Z W, Wang J, Wang J Y, et al. Analysis of the effect of vortex on the flow field of a cylindrical cyclone separator[J]. Separation and Purification Technology, 2019, 211: 438-447.
29 Wei Q, Sun G G, Gao C Z. Numerical analysis of axial gas flow in cyclone separators with different vortex finder diameters and inlet dimensions[J]. Powder Technology, 2020, 369: 321-333.
[1] 周梦雅, 周魁斌, 王朝, 黄梦源, 王一凡, 蒋军成. 坑道限制条件下水平丙烷喷射火火焰行为研究[J]. 化工学报, 2022, 73(2): 960-971.
[2] 赵文一, 匡以武, 王文, 张红星, 苗建印. 水平管内冷凝流动的稳定性[J]. 化工学报, 2021, 72(S1): 257-265.
[3] 吴月琼, 周魁斌, 黄梦源, 周梦雅. 储罐壁面限制条件下喷射火火焰行为[J]. 化工学报, 2021, 72(5): 2896-2904.
[4] 王斌, 沈聪, 王佳音, 杨景轩, 郝晓刚. 旋风分离器内细颗粒浓度分布及运动分析[J]. 化工学报, 2020, 71(S2): 201-209.
[5] 姚鑫宇, 程潇, 王晗, 沈洪, 吴慧英, 刘振宇. 铜基正弦波微通道内流动沸腾传热特性试验研究[J]. 化工学报, 2020, 71(4): 1502-1509.
[6] 高思鸿, 刘堉学, 范怡平, 卢春喜. 新型旋流场-颗粒床耦合分离设备静压分布[J]. 化工学报, 2020, 71(2): 516-525.
[7] 孙立强, 王迪, 宋健斐, 王江云, 魏耀东. 旋风分离器有无灰斗对气相流场动态特性的影响[J]. 化工学报, 2019, 70(6): 2202-2210.
[8] 熊攀, 鄢曙光, 刘玮寅. 基于响应曲面法的旋风分离器结构优化[J]. 化工学报, 2019, 70(1): 154-160.
[9] 祝及龙, 石万元. 平面上固定接触角蒸发液滴内Marangoni对流失稳现象[J]. 化工学报, 2018, 69(S1): 53-57.
[10] 王璐, 张兴芳, 董振洲, 赵忠凯, 杨景轩, 郝晓刚. 旋风分离器入口形式对内流场非稳态特性的影响[J]. 化工学报, 2018, 69(8): 3488-3501.
[11] 张文超, 焦琦, 周云龙, 杨美, 金光远, 杜利鹏. 矩形通道内低压自然循环压降型脉动及其复合型脉动可视化研究[J]. 化工学报, 2018, 69(6): 2455-2462.
[12] 高思鸿, 张丹丹, 范怡平, 卢春喜. 气体干法净化旋流吸附耦合设备压降特性[J]. 化工学报, 2018, 69(5): 1873-1883.
[13] 栾德玉, 魏星, 陈一鸣. 错位六弯叶桨搅拌假塑性流体流场宏观不稳定性数值模拟[J]. 化工学报, 2018, 69(5): 1999-2006.
[14] 王彦红, 李素芬. 超临界压力下航空煤油热声振荡的特性和预测[J]. 化工学报, 2018, 69(4): 1412-1418.
[15] 杜保周, 李慧君, 郭保仓, 孔令健, 刘志刚. 微肋阵通道流动沸腾换热与压降特性[J]. 化工学报, 2018, 69(12): 4979-4989.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!