化工学报 ›› 2022, Vol. 73 ›› Issue (7): 2844-2857.DOI: 10.11949/0438-1157.20220278
收稿日期:
2022-03-01
修回日期:
2022-05-09
出版日期:
2022-07-05
发布日期:
2022-08-01
通讯作者:
黄耀松
作者简介:
陈玉弓(1997—),男,硕士研究生,基金资助:
Yugong CHEN(),Hao CHEN,Yaosong HUANG()
Received:
2022-03-01
Revised:
2022-05-09
Online:
2022-07-05
Published:
2022-08-01
Contact:
Yaosong HUANG
摘要:
六甲基二硅氧烷是燃烧合成高纯二氧化硅纳米颗粒的重要前体,采用ReaxFF分子动力学模拟方法研究其高温热解过程,讨论了三种不同反应力场对模拟的影响并分析其可靠性,选择其中最合适的力场开展不同温度与压力下的热解产物分析,结合气相色谱实验,揭示六甲基二硅氧烷的热解路径和机理。结果表明,反应力场对ReaxFF分子动力学模拟有重要影响,通过比较分析获得了最佳反应力场,六甲基二硅氧烷的初始热解反应为Si—C键断裂导致的CH3脱离,温度升高会加剧解热反应的发生且使产物趋向于碎片化,热解的主要产物为CH3、CH4、C2烃、H2、CH2O等小分子以及SiH4、SiH2、CH4Si等含硅化合物。压力的改变会造成热解体系浓度的改变,从而影响分子间相互碰撞概率和反应的发生,压力越大则越容易形成稳定的热解产物。
中图分类号:
陈玉弓, 陈昊, 黄耀松. 基于分子反应动力学模拟的六甲基二硅氧烷热解机理研究[J]. 化工学报, 2022, 73(7): 2844-2857.
Yugong CHEN, Hao CHEN, Yaosong HUANG. Study on pyrolysis mechanism of hexamethyldisiloxane using reactive molecular dynamics simulations[J]. CIESC Journal, 2022, 73(7): 2844-2857.
Peak entry | Chemical name | Chemical structure | Peak entry | Chemical name | Chemical structure |
---|---|---|---|---|---|
1 | methane | 2 | ethane | ||
3 | ethylene | 4 | propane | ||
5 | cyclopropane | 6 | propylene | ||
7 | iso-butane | 8 | n-butane | ||
9 | 1,2-propadiene | 10 | 1-butene | ||
11 | trans-2-butene | 12 | 2-methylpropene | ||
13 | iso-pentane | 14 | cis-2-butene | ||
15 | n-pentane | 16 | 1,3-butadiene |
表1 气相色谱仪预设化合物名及结构
Table 1 The chemical name and structure of the preset compound in the gas chromatograph
Peak entry | Chemical name | Chemical structure | Peak entry | Chemical name | Chemical structure |
---|---|---|---|---|---|
1 | methane | 2 | ethane | ||
3 | ethylene | 4 | propane | ||
5 | cyclopropane | 6 | propylene | ||
7 | iso-butane | 8 | n-butane | ||
9 | 1,2-propadiene | 10 | 1-butene | ||
11 | trans-2-butene | 12 | 2-methylpropene | ||
13 | iso-pentane | 14 | cis-2-butene | ||
15 | n-pentane | 16 | 1,3-butadiene |
Chemical name | Percentage/% | |||
---|---|---|---|---|
1600 K | 1800 K | 2000 K | 2500 K | |
methane | 3.70 | 49.21 | 48.19 | 19.83 |
acetylene | 0 | 3.17 | 12.05 | 10.34 |
ethylene | 3.70 | 7.94 | 6.02 | 8.62 |
ethane | 3.70 | 0 | 1.20 | 0.86 |
表2 不同温度下ReaxFF MD模拟部分主要烃类产物占总产物分子数的比例
Table 2 The percentages of some major hydrocarbons in the total products obtained by ReaxFF MD simulation at different temperatures
Chemical name | Percentage/% | |||
---|---|---|---|---|
1600 K | 1800 K | 2000 K | 2500 K | |
methane | 3.70 | 49.21 | 48.19 | 19.83 |
acetylene | 0 | 3.17 | 12.05 | 10.34 |
ethylene | 3.70 | 7.94 | 6.02 | 8.62 |
ethane | 3.70 | 0 | 1.20 | 0.86 |
1 | Flikkema E, Bromley S T. A new interatomic potential for nanoscale silica[J]. Chemical Physics Letters, 2003, 378(5/6): 622-629. |
2 | Kammler H K, Pratsinis S E. Scaling-up the production of nanosized SiO2-particles in a double diffusion flame aerosol reactor[J]. Journal of Nanoparticle Research, 1999, 1(4): 467-477. |
3 | Sadasivan S, Rasmussen D H, Chen F P, et al. Preparation and characterization of ultrafine silica[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 132(1): 45-52. |
4 | Feroughi O M, Deng L, Kluge S, et al. Experimental and numerical study of a HMDSO-seeded premixed laminar low-pressure flame for SiO2 nanoparticle synthesis[J]. Proceedings of the Combustion Institute, 2017, 36(1): 1045-1053. |
5 | Yue R L, Meng D, Ni Y, et al. One-step flame synthesis of hydrophobic silica nanoparticles[J]. Powder Technology, 2013, 235: 909-913. |
6 | Chernyshev E A, Krasnova T L, Sergeev A P, et al. Siloxanes as sources of silanones[J]. Russian Chemical Bulletin, 1997, 46(9): 1586-1589. |
7 | Alexander M R, Jones F R, Short R D. Mass spectral investigation of the radio-frequency plasma deposition of hexamethyldisiloxane[J]. The Journal of Physical Chemistry B, 1997, 101(18): 3614-3619. |
8 | Chrystie R S M, Janbazi H, Dreier T, et al. Comparative study of flame-based SiO2 nanoparticle synthesis from TMS and HMDSO: SiO-LIF concentration measurement and detailed simulation[J]. Proceedings of the Combustion Institute, 2019, 37(1): 1221-1229. |
9 | Almond M J, Becerra R, Bowes S J, et al. A mechanistic study of the low pressure pyrolysis of linear siloxanes[J]. Physical Chemistry Chemical Physics: PCCP, 2009, 11(40): 9259-9267. |
10 | McArdle S, Endo S, Aspuru-Guzik A, et al. Quantum computational chemistry[J]. Reviews of Modern Physics, 2020, 92: 015003. |
11 | Dohm S, Bursch M, Hansen A, et al. Semiautomated transition state localization for organometallic complexes with semiempirical quantum chemical methods[J]. Journal of Chemical Theory and Computation, 2020, 16(3): 2002-2012. |
12 | van Duin A C T, Dasgupta S, Lorant F, et al. ReaxFF: a reactive force field for hydrocarbons[J]. The Journal of Physical Chemistry A, 2001, 105(41): 9396-9409. |
13 | Chenoweth K, van Duin A C T, Goddard W A. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation[J]. The Journal of Physical Chemistry. A, 2008, 112(5): 1040-1053. |
14 | Bhoi S, Banerjee T, Mohanty K. Insights on the combustion and pyrolysis behavior of three different ranks of coals using reactive molecular dynamics simulation[J]. RSC Advances, 2016, 6(4): 2559-2570. |
15 | Arvelos S, Abrahão O, Eponina Hori C. ReaxFF molecular dynamics study on the pyrolysis process of cyclohexanone[J]. Journal of Analytical and Applied Pyrolysis, 2019, 141: 104620. |
16 | Xu F, Liu H, Wang Q, et al. ReaxFF-based molecular dynamics simulation of the initial pyrolysis mechanism of lignite[J]. Fuel Processing Technology, 2019, 195: 106147. |
17 | Liu Q, Liu S X, Lv Y D, et al. Atomic-scale insight into the pyrolysis of polycarbonate by ReaxFF-based reactive molecular dynamics simulation[J]. Fuel, 2021, 287: 119484. |
18 | Wang Q D, Wang J B, Li J Q, et al. Reactive molecular dynamics simulation and chemical kinetic modeling of pyrolysis and combustion of n-dodecane[J]. Combustion and Flame, 2011, 158(2): 217-226. |
19 | Chen B, Wei X Y, Yang Z S, et al. ReaxFF reactive force field for molecular dynamics simulations of lignite depolymerization in supercritical methanol with lignite-related model compounds[J]. Energy & Fuels, 2012, 26(2): 984-989. |
20 | Chen B, Diao Z J, Zhao Y L, et al. A ReaxFF molecular dynamics (MD) simulation for the hydrogenation reaction with coal related model compounds[J]. Fuel, 2015, 154: 114-122. |
21 | van Duin A C T, Strachan A, Stewman S, et al. ReaxFFSiO reactive force field for silicon and silicon oxide systems[J]. The Journal of Physical Chemistry A, 2003, 107(19): 3803-3811. |
22 | Liu L C, Liu Y, Zybin S V, et al. ReaxFF-lg: correction of the ReaxFF reactive force field for London dispersion, with applications to the equations of state for energetic materials[J]. The Journal of Physical Chemistry A, 2011, 115(40): 11016-11022. |
23 | Liu J, Guo X. ReaxFF molecular dynamics simulation of pyrolysis and combustion of pyridine[J]. Fuel Processing Technology, 2017, 161: 107-115. |
24 | Chenoweth K, Cheung S, van Duin A C T, et al. Simulations on the thermal decomposition of a poly(dimethylsiloxane) polymer using the ReaxFF reactive force field[J]. Journal of the American Chemical Society, 2005, 127(19): 7192-7202. |
25 | Iype E, Hütter M, Jansen A P J, et al. Parameterization of a reactive force field using a Monte Carlo algorithm[J]. Journal of Computational Chemistry, 2013, 34(13): 1143-1154. |
26 | Wood M A, van Duin A C T, Strachan A. Coupled thermal and electromagnetic induced decomposition in the molecular explosive αHMX; a reactive molecular dynamics study[J]. The Journal of Physical Chemistry A, 2014, 118(5): 885-895. |
27 | Chenoweth K, van Duin A C T, Persson P, et al. Development and application of a ReaxFF reactive force field for oxidative dehydrogenation on vanadium oxide catalysts[J]. The Journal of Physical Chemistry A, 2008, 112(37): 8886. |
28 | Srinivasan S G, van Duin A C T, Ganesh P. Development of a ReaxFF potential for carbon condensed phases and its application to the thermal fragmentation of a large fullerene[J]. The Journal of Physical Chemistry A, 2015, 119(4): 571-580. |
29 | Newsome D A, Sengupta D, Foroutan H, et al. Oxidation of silicon carbide by O2 and H2O: a ReaxFF reactive molecular dynamics study (part I)[J]. The Journal of Physical Chemistry C, 2012, 116(30): 16111-16121. |
30 | Kulkarni A D, Truhlar D G, Goverapet S S, et al. Oxygen interactions with silica surfaces: coupled cluster and density functional investigation and the development of a new ReaxFF potential[J]. The Journal of Physical Chemistry C, 2013, 117(1): 258-269. |
31 | Soria F, Zhang W W, Paredes-Olivera P A, et al. Si/C/H ReaxFF reactive potential for silicon surfaces grafted with organic molecules[J]. The Journal of Physical Chemistry C, 2018, 122(41): 23515-23527. |
32 | Zhang L Z, Zybin S V, van Duin A C T, et al. Carbon cluster formation during thermal decomposition of octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine and 1, 3, 5-triamino-2, 4, 6-trinitrobenzene high explosives from ReaxFF reactive molecular dynamics simulations[J]. The Journal of Physical Chemistry A, 2009, 113(40): 10619-10640. |
[1] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[2] | 杨峥豪, 何臻, 常玉龙, 靳紫恒, 江霞. 生物质快速热解下行式流化床反应器研究进展[J]. 化工学报, 2023, 74(6): 2249-2263. |
[3] | 衣思敏, 马亚丽, 刘伟强, 张金帅, 岳岩, 郑强, 贾松岩, 李雪. 微晶菱镁矿蒸氨及水化动力学研究[J]. 化工学报, 2023, 74(4): 1578-1586. |
[4] | 陈瑞哲, 程磊磊, 顾菁, 袁浩然, 陈勇. 纤维增强树脂复合材料化学回收技术研究进展[J]. 化工学报, 2023, 74(3): 981-994. |
[5] | 张娜, 潘鹤林, 牛波, 张亚运, 龙东辉. 酚醛树脂热裂解反应机理的密度泛函理论研究[J]. 化工学报, 2023, 74(2): 843-860. |
[6] | 陈晨, 杨倩, 陈云, 张睿, 刘冬. 不同氧浓度下煤挥发分燃烧的化学动力学研究[J]. 化工学报, 2022, 73(9): 4133-4146. |
[7] | 郝泽光, 张乾, 高增林, 张宏文, 彭泽宇, 杨凯, 梁丽彤, 黄伟. 生物质与催化裂化油浆共热解协同作用研究[J]. 化工学报, 2022, 73(9): 4070-4078. |
[8] | 邵健, 冯军宗, 柳凤琦, 姜勇刚, 李良军, 冯坚. 酚醛树脂基炭微球结构调控与功能化制备研究进展[J]. 化工学报, 2022, 73(9): 3787-3801. |
[9] | 肖皓宇, 杨海平, 张雄, 陈应泉, 王贤华, 陈汉平. 塑料催化热解制备高附加值产品的研究进展[J]. 化工学报, 2022, 73(8): 3461-3471. |
[10] | 唐恺鸿, 何晓峰, 徐桂秋, 于洋, 刘啸凤, 葛铁军, 张爱玲. 酚醛泡沫的燃烧行为及阻燃研究进展[J]. 化工学报, 2022, 73(8): 3483-3500. |
[11] | 陈永安, 周安宁, 李云龙, 石智伟, 贺新福, 焦卫红. 磁性MgFe2O4及其核壳催化剂制备与煤热解性能研究[J]. 化工学报, 2022, 73(7): 3026-3037. |
[12] | 郑默, 李晓霞. ReaxFF MD模拟揭示的煤热解挥发分自由基反应的竞争与协调[J]. 化工学报, 2022, 73(6): 2732-2741. |
[13] | 陈冠益, 童图军, 李瑞, 王燕杉, 颜蓓蓓, 李宁, 侯立安. 热解时间对污泥生物炭活化过硫酸盐的影响研究[J]. 化工学报, 2022, 73(5): 2111-2119. |
[14] | 赵希强, 张健, 孙爽, 王文龙, 毛岩鹏, 孙静, 刘景龙, 宋占龙. 生物质炭改性微球去除化工废水中无机磷的性能研究[J]. 化工学报, 2022, 73(5): 2158-2173. |
[15] | 郭行, 韩纹莉, 董晓玲, 李文翠. 调控炭化过程优化煤基硬炭负极储钠性能[J]. 化工学报, 2022, 73(4): 1794-1806. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||