化工学报 ›› 2022, Vol. 73 ›› Issue (9): 4045-4053.DOI: 10.11949/0438-1157.20220693
收稿日期:
2022-05-16
修回日期:
2022-07-04
出版日期:
2022-09-05
发布日期:
2022-10-09
通讯作者:
刘坤
作者简介:
刘坤(1981—),男,博士,副教授,liukun@cqu.edu.cn
基金资助:
Kun LIU(), Yuan YIN, Wenqiang GENG, Haotian XIA
Received:
2022-05-16
Revised:
2022-07-04
Online:
2022-09-05
Published:
2022-10-09
Contact:
Kun LIU
摘要:
介质阻挡放电(DBD)是一种典型的低温气体放电等离子体手段,能够在温和的条件下产生大面积的放电等离子体从而进行固氮,具有绿色环保、高效节能等特点。然而目前DBD的固氮能耗偏高,有着相当大的优化空间。探究了调控电压与气流量对DBD固氮性能的影响,以液相固氮的形式考察了总氮浓度TNC和固氮能耗EC的变化情况,并通过分析DBD气相产物变化规律揭示了DBD固氮的反应机理。研究发现,不同条件下的DBD气相产物会处于臭氧模式、过渡模式和氮氧化物模式三种模式之一,而各实验条件下的EC最小值均处于过渡模式,分析其原因在于该模式下可以有效生成NO2和N2O5,提升可溶性氮的占比进而促进了固氮效果。EC的最小值在电压为18 kV、气流量为8 L/min时取得,为31.69 MJ/mol。
中图分类号:
刘坤, 尹远, 耿文强, 夏昊天. 不同操作参数下介质阻挡放电的固氮性能研究及机理分析[J]. 化工学报, 2022, 73(9): 4045-4053.
Kun LIU, Yuan YIN, Wenqiang GENG, Haotian XIA. Study on nitrogen fixation performance and mechanism analysis of dielectric barrier discharge under different operating parameters[J]. CIESC Journal, 2022, 73(9): 4045-4053.
气流量/(L/min) | 12 kV | 14 kV | 16 kV | 18 kV | 20 kV | 22 kV | 24 kV |
---|---|---|---|---|---|---|---|
1 | 124.3 | 142.8 | 169.9 | 195.7 | 234.1 | 255.5 | 255.4 |
2 | 91.7 | 88.8 | 145.5 | 158.9 | 160.4 | 174.6 | 193.4 |
3 | 85.9 | 55.3 | 114.9 | 137.3 | 165.1 | 191.3 | 186.6 |
4 | 73.6 | 44.3 | 49.1 | 122.3 | 133.7 | 147.8 | 146.1 |
5 | 64.4 | 40.1 | 44.5 | 104.2 | 145.7 | 140.7 | 146.6 |
6 | 55.8 | 37.1 | 37.2 | 52.0 | 98.1 | 118.3 | 124.9 |
7 | 53.8 | 38.0 | 37.5 | 35.4 | 68.1 | 100.7 | 108.1 |
8 | 48.6 | 32.1 | 31.7 | 32.6 | 40.3 | 85.6 | 99.7 |
表1 EC与DBD气相产物模式的关系
Table 1 Relationship between EC and DBD product mode
气流量/(L/min) | 12 kV | 14 kV | 16 kV | 18 kV | 20 kV | 22 kV | 24 kV |
---|---|---|---|---|---|---|---|
1 | 124.3 | 142.8 | 169.9 | 195.7 | 234.1 | 255.5 | 255.4 |
2 | 91.7 | 88.8 | 145.5 | 158.9 | 160.4 | 174.6 | 193.4 |
3 | 85.9 | 55.3 | 114.9 | 137.3 | 165.1 | 191.3 | 186.6 |
4 | 73.6 | 44.3 | 49.1 | 122.3 | 133.7 | 147.8 | 146.1 |
5 | 64.4 | 40.1 | 44.5 | 104.2 | 145.7 | 140.7 | 146.6 |
6 | 55.8 | 37.1 | 37.2 | 52.0 | 98.1 | 118.3 | 124.9 |
7 | 53.8 | 38.0 | 37.5 | 35.4 | 68.1 | 100.7 | 108.1 |
8 | 48.6 | 32.1 | 31.7 | 32.6 | 40.3 | 85.6 | 99.7 |
1 | Peng P, Chen P, Schiappacasse C, et al. A review on the non-thermal plasma-assisted ammonia synthesis technologies[J]. Journal of Cleaner Production, 2018, 177: 597-609. |
2 | Rouwenhorst K H R, Jardali F, Bogaerts A, et al. From the Birkeland-Eyde process towards energy-efficient plasma-based NO x synthesis: a techno-economic analysis[J]. Energy & Environmental Science, 2021, 14(5): 2520-2534. |
3 | 卢新培, 雷昕雨, 程鹤, 等. 等离子体技术的固氮应用[J]. 南昌大学学报(理科版), 2021, 45(6): 511-519. |
Lu X P, Lei X Y, Cheng H, et al. Plasma technology for N2 fixation application[J]. Journal of Nanchang University (Natural Science), 2021, 45(6): 511-519. | |
4 | Cherkasov N, Ibhadon A O, Fitzpatrick P. A review of the existing and alternative methods for greener nitrogen fixation[J]. Chemical Engineering and Processing: Process Intensification, 2015, 90: 24-33. |
5 | Patil B S, Wang Q, Hessel V, et al. Plasma N2-fixation: 1900-2014[J]. Catalysis Today, 2015, 256: 49-66. |
6 | Dave H, Ledwani L, Nema S K. Nonthermal plasma: a promising green technology to improve environmental performance of textile industries[J]. The Impact and Prospects of Green Chemistry for Textile Technology, 2019: 199-249. |
7 | Liu K, Hu Y, Lei J. The chemical product mode transition of the air DBD driven by AC power: a plausible evaluation parameter and the chemical behaviors[J]. Physics of Plasmas, 2017, 24(10): 103513. |
8 | Liu K, Ren W, Ran C, et al. Long-lived species in plasma-activated water generated by AC multi-needle-to-water discharge: effects of gas flow on chemical reactions [J]. Journal of Physics D: Applied Physics, 2021, 54(6): 5201. |
9 | 杨宽辉, 王保伟, 许根慧. 介质阻挡放电等离子体特性及其在化工中的应用[J]. 化工学报, 2007, 58(7): 1609-1618. |
Yang K H, Wang B W, Xu G H. Dielectric-barrier discharge plasma characteristics and its application in chemical engineering[J]. Journal of Chemical Industry and Engineering (China), 2007, 58(7):1609-1618. | |
10 | 汪涛, 孙保民, 肖海平, 等. 介质阻挡放电中气体成分对NO x 脱除的影响[J]. 化工学报, 2012, 63(11): 3652-3659. |
Wang T, Sun B M, Xiao H P, et al. Effect of gas composition on NO x removal in dielectric barrier discharge reactor[J]. CIESC Journal, 2012, 63(11): 3652-3659. | |
11 | Roy N C, Pattyn C, Remy A, et al. NO x synthesis by atmospheric‐pressure N2/O2 filamentary DBD plasma over water: physicochemical mechanisms of plasma-liquid interactions[J]. Plasma Processes and Polymers, 2021, 18(3): 2000087. |
12 | Sakakura T, Takatsuji Y, Morimoto M, et al. Nitrogen fixation through the plasma/liquid interfacial reaction with controlled conditions of each phase as the reaction locus[J]. Electrochemistry, 2020, 88(3): 190-194. |
13 | Sakakura T, Murakami N, Takatsuji Y, et al. Contribution of discharge excited atomic N, N 2 * , and N 2 + to a plasma/liquid interfacial reaction as suggested by quantitative analysis[J]. ChemPhysChem, 2019, 20(11): 1467-1474. |
14 | Wu S, Thapa B, Rivera C, et al. Nitrate and nitrite fertilizer production from air and water by continuous flow liquid-phase plasma discharge[J]. Journal of Environmental Chemical Engineering, 2021, 9(2): 104761. |
15 | Tang X L, Wang J G, Yi H H, et al. Nitrogen fixation and NO conversion using dielectric barrier discharge reactor: identification and evolution of products[J]. Plasma Chemistry and Plasma Processing, 2018, 38(3): 485-501. |
16 | Ma Y C, Wang Y L, Harding J, Tu X. Plasma-enhanced N2 fixation in a dielectric barrier discharge reactor: effect of packing materials[J]. Plasma Source Science and Technology, 2021, 30(10): 105002. |
17 | Patil B S, Cherkasov N, Lang J, et al. Low temperature plasma-catalytic NO x synthesis in a packed DBD reactor: effect of support materials and supported active metal oxides[J]. Applied Catalysis B: Environmental, 2016, 194: 123-133. |
18 | Han Y F, Wen S Y, Tang H W, et al. Influences of frequency on nitrogen fixation of dielectric barrier discharge in air[J]. Plasma Science and Technology, 2018, 20(1): 014001. |
19 | Chen J G, Crooks R M, Seefeldt L C, et al. Beyond fossil fuel-driven nitrogen transformations[J]. Science, 2018, 360(6391): eaar6611. |
20 | Liu K, Zuo J, Ran C F, et al. Reduced electric field and gas temperature effects on chemical product dynamics in air surface dielectric barrier discharges: from macro-physical parameters to micro-chemical mechanisms[J]. Physical Chemistry Chemical Physics, 2022, 24(15): 8940-8949. |
21 | Liu K, Zheng Z F, Liu S T, et al. Study on the physical and chemical characteristics of DBD: the effect of N2/O2 mixture ratio on the product regulation[J]. Plasma Chemistry and Plasma Processing, 2019, 39(5): 1255-1274. |
22 | 黄萍, 盘思伟, 黄碧纯, 等. MnO x /Al-SBA-15的结构性质及低温NH3选择性催化还原NO x [J]. 物理化学学报, 2013, 29(1): 176-182. |
Huang P, Pan S W, Huang B C, et al. Structural properties of MnO x /Al-SBA-15 in low-temperature selective catalytic reduction of NO x with NH3 [J]. Acta Physico-Chimica Sinica, 2013, 29(1): 176-182. | |
23 | 郝冬亮. 碱性过硫酸钾消解紫外分光光度法测定总氮的影响因素[J]. 中国给水排水, 2014, 30(12):148-150. |
Hao D L. Influence factors of alkaline potassium persulfate digestion UV spectrophotometry for determination of total nitrogen[J]. China Water & Wastewater, 2014, 30(12): 148-150. | |
24 | 龚发萍, 高丽红, 周永丽, 等. 二极管激光吸收光谱法对低气压介质阻挡放电等离子体中氩的亚稳态的诊断[J]. 光谱学与光谱分析, 2017, 37(2): 379-386. |
Gong F P, Gao L H, Zhou Y L, et al. Diagnosis of argon metastable state in low pressure DBD plasma using diode laser absorption spectroscopy[J]. Spectroscopy and Spectral Analysis, 2017, 37(2): 379-386. | |
25 | Liu K, Xia H T, Yang M H, et al. Insights into generation of OH radicals in plasma jets with constant power: the effects of driving voltage and frequency[J]. Vacuum, 2022, 198: 110901. |
26 | Zhao G B, Garikipati S V B J, Hu X D, et al. Effect of oxygen on nonthermal plasma reactions of nitrogen oxides in nitrogen[J]. AIChE Journal, 2005, 51(6): 1800-1812. |
27 | Liu K, Duan Q S, Zheng Z F, et al. Gas-phase peroxynitrite generation using dielectric barrier discharge at atmospheric pressure: a prospective sterilizer[J]. Plasma Processes and Polymers, 2021, 18(11): 2100016. |
28 | Cao X, Zhao W X, Zhang R X, et al. Conversion of NO with a catalytic packed-bed dielectric barrier discharge reactor[J]. Plasma Science and Technology, 2017, 19(11): 115504. |
29 | Jõgi I, Erme K, Raud J,et al. Oxidation of NO by ozone in the presence of TiO2 catalyst[J]. Fuel, 2016, 173: 45-51. |
30 | Wan C, Bao H Q, Chen Z, et al. The prediction of nitric oxide conversion by dielectric barrier discharge using an artificial neural network model[J]. Journal of the Energy Institute, 2022, 101: 96-110. |
31 | Eliasson B, Hirth M, Kogelschatz U. Ozone synthesis from oxygen in dielectric barrier discharges[J]. Journal of Physics D: Applied Physics, 1987, 20(11): 1421-1437. |
32 | Pavlovich M J, Clark D S, Graves D B. Quantification of air plasma chemistry for surface disinfection[J]. Plasma Sources Science and Technology, 2014, 23(6): 065036. |
33 | Kogelschatz U, Eliasson B, Hirth M. Ozone generation from oxygen and air: discharge physics and reaction mechanisms[J]. Ozone: Science & Engineering, 1988, 10(4): 367-377. |
34 | Teodoru S, Kusano Y, Bogaerts A. The effect of O2 in a humid O2/N2/NO x gas mixture on NO x and N2O remediation by an atmospheric pressure dielectric barrier discharge[J]. Plasma Processes and Polymers, 2012, 9(7): 652-689. |
[1] | 金伟其, 吴月荣, 王霞, 李力, 裘溯, 袁盼, 王铭赫. 化工园区工业气体泄漏气云红外成像检测技术与国产化装备进展[J]. 化工学报, 2023, 74(S1): 32-44. |
[2] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[3] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[4] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[5] | 郑玉圆, 葛志伟, 韩翔宇, 王亮, 陈海生. 中高温钙基材料热化学储热的研究进展与展望[J]. 化工学报, 2023, 74(8): 3171-3192. |
[6] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[7] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[8] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[9] | 陈吉, 洪泽, 雷昭, 凌强, 赵志刚, 彭陈辉, 崔平. 基于分子动力学的焦炭溶损反应及其机理研究[J]. 化工学报, 2023, 74(7): 2935-2946. |
[10] | 何晓崐, 刘锐, 薛园, 左然. MOCVD生长AlN单晶薄膜的气相和表面化学反应综述[J]. 化工学报, 2023, 74(7): 2800-2813. |
[11] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
[12] | 杨峥豪, 何臻, 常玉龙, 靳紫恒, 江霞. 生物质快速热解下行式流化床反应器研究进展[J]. 化工学报, 2023, 74(6): 2249-2263. |
[13] | 周小文, 杜杰, 张战国, 许光文. 基于甲烷脉冲法的Fe2O3-Al2O3载氧体还原特性研究[J]. 化工学报, 2023, 74(6): 2611-2623. |
[14] | 朱风, 陈凯琳, 黄小凤, 鲍银珠, 李文斌, 刘嘉鑫, 吴玮强, 高王伟. KOH改性电石渣脱除羰基硫的性能研究[J]. 化工学报, 2023, 74(6): 2668-2679. |
[15] | 李晨曦, 刘永峰, 张璐, 刘海峰, 宋金瓯, 何旭. O2/CO2氛围下正庚烷的燃烧机理研究[J]. 化工学报, 2023, 74(5): 2157-2169. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 475
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 365
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||