化工学报 ›› 2022, Vol. 73 ›› Issue (12): 5564-5571.DOI: 10.11949/0438-1157.20221152
收稿日期:
2022-08-17
修回日期:
2022-11-24
出版日期:
2022-12-05
发布日期:
2023-01-17
通讯作者:
谭厚章
作者简介:
李艳(1984—),女,博士,高级工程师,175608795@qq.com
基金资助:
Yan LI1(), Jinhui CAO1, Yuanyi LIU1, Houzhang TAN2(
)
Received:
2022-08-17
Revised:
2022-11-24
Online:
2022-12-05
Published:
2023-01-17
Contact:
Houzhang TAN
摘要:
在固定床上进行了麦秆与木屑2种生物质的热解实验,对热解碳烟产物的产率、微观形貌等理化性质进行了表征,并在热天平上测定其氧化/气化特性。研究了在不同热解温度下两种生物质产生碳烟的产率、粒径分布及内部纳观结构的变化趋势,在此基础上分析了碳烟反应活性的影响因素,并将结果与采用一维沉降炉热解方式获得的碳烟对比。结果表明:采用固定床热解获得的碳烟具有较高的纯度。随着生成温度的升高,碳烟结构排列更加有序,石墨化程度提高,基本粒子的几何平均粒径变小,同时碳烟的反应活性变差,说明碳烟内部结构的变化对反应活性的影响起主要的控制作用。单位空间内生物质的燃料浓度会影响碳烟的产率、粒径等特性。高的原料空间浓度倾向于生成更多的碳烟,并且碳烟具有更大的粒径。木屑碳烟相比麦秆碳烟石墨化程度更高,反应活性较差。
中图分类号:
李艳, 曹进辉, 刘原一, 谭厚章. 生物质固定床热解碳烟结构特征及反应活性[J]. 化工学报, 2022, 73(12): 5564-5571.
Yan LI, Jinhui CAO, Yuanyi LIU, Houzhang TAN. Characterization and reactivity of soot from biomass pyrolysis in a fixed bed reactor[J]. CIESC Journal, 2022, 73(12): 5564-5571.
碳烟样品 | 晶面间距d002/nm | 堆垛高度Lc/nm | 片层直径La/nm | 晶层数目N |
---|---|---|---|---|
麦秆-1100℃ | 0.3568 | 1.84 | 3.09 | 6.2 |
麦秆-1200℃ | 0.3522 | 1.97 | 3.24 | 6.7 |
木屑-1100℃ | 0.3533 | 2.04 | 3.47 | 6.7 |
木屑-1200℃ | 0.3523 | 1.93 | 4.28 | 6.5 |
表1 不同温度热解碳烟晶体结构参数
Table 1 Crystal structure parameters of soot samples from different formed temperatures
碳烟样品 | 晶面间距d002/nm | 堆垛高度Lc/nm | 片层直径La/nm | 晶层数目N |
---|---|---|---|---|
麦秆-1100℃ | 0.3568 | 1.84 | 3.09 | 6.2 |
麦秆-1200℃ | 0.3522 | 1.97 | 3.24 | 6.7 |
木屑-1100℃ | 0.3533 | 2.04 | 3.47 | 6.7 |
木屑-1200℃ | 0.3523 | 1.93 | 4.28 | 6.5 |
碳烟样品 | Ti/℃ | Tp/℃ | Tf/℃ | Wmax/(%/min) | Wmean/(%/min) | MC/% | MK/% | Mr/% |
---|---|---|---|---|---|---|---|---|
麦秆-1100℃ | 530.6 | 575.2 | 593.4 | -13.80 | -6.58 | 87.15 | 9.01 | 3.84 |
麦秆-1200℃ | 532.5 | 607.1 | 622.6 | -9.94 | -6.06 | 87.89 | 6.50 | 5.61 |
木屑-1100℃ | 591.7 | 647.1 | 675.6 | -12.06 | -6.31 | 90.48 | 0 | 9.52 |
木屑-1200℃ | 615.6 | 670.0 | 703.5 | -11.36 | -6.04 | 95.05 | 0 | 4.95 |
表2 生物质固定床不同温度热解碳烟热重氧化曲线特征参数
Table 2 Characteristic parameters from soot oxidation curves
碳烟样品 | Ti/℃ | Tp/℃ | Tf/℃ | Wmax/(%/min) | Wmean/(%/min) | MC/% | MK/% | Mr/% |
---|---|---|---|---|---|---|---|---|
麦秆-1100℃ | 530.6 | 575.2 | 593.4 | -13.80 | -6.58 | 87.15 | 9.01 | 3.84 |
麦秆-1200℃ | 532.5 | 607.1 | 622.6 | -9.94 | -6.06 | 87.89 | 6.50 | 5.61 |
木屑-1100℃ | 591.7 | 647.1 | 675.6 | -12.06 | -6.31 | 90.48 | 0 | 9.52 |
木屑-1200℃ | 615.6 | 670.0 | 703.5 | -11.36 | -6.04 | 95.05 | 0 | 4.95 |
17 | 李艳, 谭厚章, 王学斌, 等.生物质高温热解气、液、固三相产物及碳烟生成特性[J].西安交通大学学报, 2018, 52(1): 61-68. |
Li Y, Tan H Z, Wang X B, et al. Formation mechanisms of three-phase products and soot during the pyrolysis of biomass at high temperatures[J]. Journal of Xi'an Jiaotong University, 2018, 52(1): 61-68. | |
18 | Ma J L, Fletcher T H, Webb B W. Conversion of coal tar to soot during coal pyrolysis in a post-flame environment[J]. Symposium (International) on Combustion, 1996, 26(2): 3161-3167. |
19 | Fletcher T H, Ma J L, Rigby J R, et al. Soot in coal combustion systems[J]. Progress in Energy and Combustion Science, 1997, 23(3): 283-301. |
20 | Kurian V, Mahapatra N, Wang B, et al. Analysis of soot formed during the pyrolysis of athabasca oil sand asphaltenes[J]. Energy & Fuels, 2015, 29(10): 6823-6831. |
21 | 张炜, 宋崇林, 王林, 等. 柴油机燃烧过程中微粒微观结构的变化规律[J].内燃机学报.2010, 28(3): 221-227. |
Zhang W, Song C L, Wang L, et al. Microstructure histories of in-cylinder particulates from a diesel engine[J]. Transactions of CSICE, 2010, 28(3): 221-227. | |
22 | 宋崇林, 李博, 马翔, 等.火焰温度对碳烟微观结构和氧化活性的影响[J].天津大学学报(自然科学与工程技术版), 2015(6): 535-541. |
Song C L, Li B, Ma X, et al. Effect of flame temperature on the microstructure and oxidation reactivity of soot particles[J]. Journal of Tianjin University(Science and Technology), 2015(6): 535-541. | |
23 | Ishiguro T, Takatori Y, Akihama K. Microstructure of diesel soot particles probed by electron microscopy: first observation of inner core and outer shell[J]. Combustion and Flame, 1997, 108(1/2): 231-234. |
24 | 王亚军.润滑油对柴油机颗粒物氧化反应性影响的实验研究[D].天津: 天津大学, 2020. |
Wang Y J. Experimental study on effect of lubricating oil on the oxidation reactivity of diesel particles [D]. Tianjin: Tianjin University, 2020. | |
25 | 崔鹏, 刘军恒, 谈秉乾, 等.气氛对柴油机碳烟热老化及其理化特性的影响[J].西安交通大学学报, 2022, 56(4): 23-31. |
1 | Wang H. Formation of nascent soot and other condensed-phase materials in flames[J]. Proceedings of the Combustion Institute, 2011, 33(1): 41-67. |
2 | Richter H, Howard J B. Formation of polycyclic aromatic hydrocarbons and their growth to soot—a review of chemical reaction pathways[J]. Progress in Energy and Combustion Science, 2000, 26(4/5/6): 565-608. |
3 | 蒋好, 朱有健, 邵敬爱, 等.生物质热解碳烟的研究进展[J].化工进展, 2021, 40(10): 5772-5785. |
Jiang H, Zhu Y J, Shao J A, et al. Review on soot formation during biomass pyrolysis[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5772-5785. | |
4 | He Q, Guo Q H, Umeki K, et al. Soot formation during biomass gasification: a critical review[J]. Renewable and Sustainable Energy Reviews, 2021, 139: 110710. |
5 | Umeki K, Häggström G, Bach-Oller A, et al. Reduction of tar and soot formation from entrained-flow gasification of woody biomass by alkali impregnation[J]. Energy & Fuels, 2017, 31(5): 5104-5110. |
6 | Chhiti Y, Peyrot M, Salvador S. Soot formation and oxidation during bio-oil gasification: experiments and modeling[J]. Journal of Energy Chemistry, 2013, 22(5): 701-709. |
7 | Wilson J M, Baeza-Romero M T, Jones J M, et al. Soot formation from the combustion of biomass pyrolysis products and a hydrocarbon fuel, n-decane: an aerosol time of flight mass spectrometer (ATOFMS) study[J]. Energy & Fuels, 2013, 27(3): 1668-1678. |
8 | Feng D D, Guo D W, Shang Q, et al. Mechanism of biochar-gas-tar-soot formation during pyrolysis of different biomass feedstocks: effect of inherent metal species[J].Fuel, 2021, 293: 120409. |
9 | Trubetskaya A, Jensen P A, Jensen A D, et al. Effects of several types of biomass fuels on the yield, nanostructure and reactivity of soot from fast pyrolysis at high temperatures[J]. Applied Energy, 2016, 171: 468-482. |
10 | Trubetskaya A, Brown A, Tompsett G A, et al. Characterization and reactivity of soot from fast pyrolysis of lignocellulosic compounds and monolignols[J]. Applied Energy, 2018, 212: 1489-1500. |
11 | Septien S, Valin S, Peyrot M, et al. Characterization of char and soot from millimetric wood particles pyrolysis in a drop tube reactor between 800°C and 1400°C[J]. Fuel, 2014, 121: 216-224. |
12 | Wiinikka H, Toth P, Jansson K, et al. Particle formation during pressurized entrained flow gasification of wood powder: effects of process conditions on chemical composition, nanostructure, and reactivity[J]. Combustion and Flame, 2018, 189: 240-256. |
25 | Cui P, Liu J H, Tan B Q . et al. Effect of different atmospheres on the thermal aging and physicochemical characteristics of diesel carbon black[J]. Journal of Xi'an Jiaotong University, 2022, 56(4): 23-31. |
26 | Wang L, Song C L, Song J O, et al. Aliphatic C—H and oxygenated surface functional groups of diesel in-cylinder soot: characterizations and impact on soot oxidation behavior[J]. Proceedings of the Combustion Institute, 2013, 34(2): 3099-3106. |
27 | Apicella B, PréP, AlfèM, et al. Soot nanostructure evolution in premixed flames by high resolution electron transmission microscopy (HRTEM)[J]. Proceedings of the Combustion Institute, 2015, 35(2): 1895-1902. |
28 | Wang C A, Huddle T, Huang C H, et al. Improved quantification of curvature in high-resolution transmission electron microscopy lattice fringe micrographs of soots[J]. Carbon, 2017, 117: 174-181. |
29 | Qin K, Lin W G, Fæster S, et al. Characterization of residual particulates from biomass entrained flow gasification[J]. Energy & Fuels, 2013, 27(1): 262-270. |
13 | 李艳, 谭厚章, 刘原一, 等.热解温度与碱金属对生物质热解碳烟氧化活性的影响[J].西安交通大学学报, 2020, 54(8): 20-26. |
Li Y, Tan H Z, Liu Y Y, et al. Influences of formation temperature and potassium salts on oxidation reactivity of soot from biomass pyrolysis[J]. Journal of Xi'an Jiaotong University, 2020, 54(8): 20-26. | |
14 | Vander Wal R L, Tomasek A J. Soot oxidation: dependence upon initial nanostructure[J]. Combustion and Flame, 2003, 134(1/2): 1-9. |
15 | Müller J O, Su D S, Jentoft R E, et al. Morphology-controlled reactivity of carbonaceous materials towards oxidation[J]. Catalysis Today, 2005, 102/103: 259-265. |
16 | AlfèM, Apicella B, Barbella R, et al. Structure-property relationship in nanostructures of young and mature soot in premixed flames[J]. Proceedings of the Combustion Institute, 2009, 32(1): 697-704. |
[1] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[2] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[3] | 吴文涛, 褚良永, 张玲洁, 谭伟民, 沈丽明, 暴宁钟. 腰果酚生物基自愈合微胶囊的高效制备工艺研究[J]. 化工学报, 2023, 74(7): 3103-3115. |
[4] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[5] | 杨峥豪, 何臻, 常玉龙, 靳紫恒, 江霞. 生物质快速热解下行式流化床反应器研究进展[J]. 化工学报, 2023, 74(6): 2249-2263. |
[6] | 董茂林, 陈李栋, 黄六莲, 吴伟兵, 戴红旗, 卞辉洋. 酸性助水溶剂制备木质纳米纤维素及功能应用研究进展[J]. 化工学报, 2023, 74(6): 2281-2295. |
[7] | 葛泽峰, 吴雨青, 曾名迅, 查振婷, 马宇娜, 侯增辉, 张会岩. 灰化学成分对生物质气化特性的影响规律[J]. 化工学报, 2023, 74(5): 2136-2146. |
[8] | 包嘉靖, 别洪飞, 王子威, 肖睿, 刘冬, 吴石亮. 正庚烷对冲扩散火焰中添加长链醚类对碳烟前体生成特性的影响[J]. 化工学报, 2023, 74(4): 1680-1692. |
[9] | 刘海芹, 李博文, 凌喆, 刘亮, 俞娟, 范一民, 勇强. 羟基-炔点击化学改性半乳甘露聚糖薄膜的制备及性能研究[J]. 化工学报, 2023, 74(3): 1370-1378. |
[10] | 祖凌鑫, 胡荣庭, 李鑫, 陈余道, 陈广林. 木质生物质化学组分的碳释放产物特征和反硝化利用程度[J]. 化工学报, 2023, 74(3): 1332-1342. |
[11] | 郑杰元, 张先伟, 万金涛, 范宏. 丁香酚环氧有机硅树脂的制备及其固化动力学研究[J]. 化工学报, 2023, 74(2): 924-932. |
[12] | 陈健鑫, 朱瑞杰, 盛楠, 朱春宇, 饶中浩. 纤维素基生物质多孔炭的制备及其超级电容器性能研究[J]. 化工学报, 2022, 73(9): 4194-4206. |
[13] | 郝泽光, 张乾, 高增林, 张宏文, 彭泽宇, 杨凯, 梁丽彤, 黄伟. 生物质与催化裂化油浆共热解协同作用研究[J]. 化工学报, 2022, 73(9): 4070-4078. |
[14] | 张东旺, 杨海瑞, 周托, 黄中, 李诗媛, 张缦. 生物质锅炉对流受热面积灰冷态模拟实验研究[J]. 化工学报, 2022, 73(8): 3731-3738. |
[15] | 刘新华, 韩振南, 韩健, 梁斌, 张楠, 胡善伟, 白丁荣, 许光文. 基于热解与燃烧反应重构的低NO x 解耦燃烧原理与技术[J]. 化工学报, 2022, 73(8): 3355-3368. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 129
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 296
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||