化工学报 ›› 2023, Vol. 74 ›› Issue (3): 1042-1053.DOI: 10.11949/0438-1157.20221312
陈俊先1(), 姬忠礼1(), 赵瑜2, 张倩2, 周岩2, 刘猛3, 刘震1
收稿日期:
2022-09-30
修回日期:
2022-12-22
出版日期:
2023-03-05
发布日期:
2023-04-19
通讯作者:
姬忠礼
作者简介:
陈俊先(1993—),男,博士研究生,chenjx_cup93@163.com
基金资助:
Junxian CHEN1(), Zhongli JI1(), Yu ZHAO2, Qian ZHANG2, Yan ZHOU2, Meng LIU3, Zhen LIU1
Received:
2022-09-30
Revised:
2022-12-22
Online:
2023-03-05
Published:
2023-04-19
Contact:
Zhongli JI
摘要:
针对天然气管道内颗粒物难以检测的问题,提出了一种基于微波技术的管道内颗粒物在线检测方法。首先对我国天然气管网内颗粒物进行特征分析,并基于微波测量原理以密封探针的方式实现了微波在管道中的传输;其次,采用有限元仿真软件对密封探针结构优化以及管道尺寸(两探针间距)进行研究,分析微波测量系统的电流分布规律和最优结构参数;最后,搭建实验平台,定量分析了不同工况下测量系统输出电压与颗粒物浓度的影响规律。结果表明,当管道内液滴浓度在39~210 mg/m3变化时,采用二次函数拟合测量系统输出电压与液滴浓度的关系,可决系数R2在0.966以上;各信号采样点的相对示值误差平均值在5.20%上下波动,测量系统重复性都在0.24%范围内变化。
中图分类号:
陈俊先, 姬忠礼, 赵瑜, 张倩, 周岩, 刘猛, 刘震. 基于微波技术的天然气管道内颗粒物在线检测方法研究[J]. 化工学报, 2023, 74(3): 1042-1053.
Junxian CHEN, Zhongli JI, Yu ZHAO, Qian ZHANG, Yan ZHOU, Meng LIU, Zhen LIU. Study on online detection method of particulate matter in natural gas pipeline based on microwave technology[J]. CIESC Journal, 2023, 74(3): 1042-1053.
材料 | 相对介电常数 | 磁导率 | 电导率/(S/m) |
---|---|---|---|
天然气 | 1 | 1 | 1×10-5 |
测量管段 | 1 | 1 | 1×10-8 |
探针填充物 | 2 | 1 | 0 |
同轴接口 | 1 | 1 | 5.997×107 |
探针外壳 | 1 | 1 | 5.997×107 |
表1 主要材料的属性参数
Table 1 Attribute parameters of major materials
材料 | 相对介电常数 | 磁导率 | 电导率/(S/m) |
---|---|---|---|
天然气 | 1 | 1 | 1×10-5 |
测量管段 | 1 | 1 | 1×10-8 |
探针填充物 | 2 | 1 | 0 |
同轴接口 | 1 | 1 | 5.997×107 |
探针外壳 | 1 | 1 | 5.997×107 |
数据采样点 | 光学检测系统颗粒物 浓度值/(mg/m3) | 微波测量系统 电压值/μV | 流速/(m/s) | 各测试点单次检定 相对示值误差/% | 各测试点相对示值 误差平均值/% | 重复性/% |
---|---|---|---|---|---|---|
6 | 0 | 514.27 | 1.12 | — | — | — |
44.28 | 544.21 | 1.12 | 5.82 | 5.58 | 0.233 | |
48.57 | 542.87 | 1.13 | 5.56 | |||
39.32 | 541.82 | 1.12 | 5.36 | |||
5 | 0 | 517.64 | 0.84 | — | — | — |
58.07 | 546.18 | 0.84 | 5.51 | 5.55 | 0.161 | |
50.27 | 547.31 | 0.84 | 5.73 | |||
54.65 | 545.68 | 0.82 | 5.42 | |||
4 | 0 | 521.56 | 0.70 | — | — | — |
64.76 | 549.63 | 0.71 | 5.38 | 5.21 | 0.150 | |
69.84 | 548.24 | 0.68 | 5.12 | |||
65.11 | 548.31 | 0.68 | 5.13 | |||
3 | 0 | 524.13 | 0.57 | — | — | — |
88.63 | 551.22 | 0.58 | 5.17 | 5.16 | 0.114 | |
85.22 | 551.73 | 0.56 | 5.27 | |||
81.45 | 550.54 | 0.57 | 5.04 | |||
2 | 0 | 528.47 | 0.42 | — | — | — |
112.41 | 554.24 | 0.43 | 4.88 | 4.86 | 0.105 | |
106.69 | 553.58 | 0.41 | 4.75 | |||
116.34 | 554.68 | 0.40 | 4.96 | |||
1 | 0 | 532.25 | 0.27 | — | — | — |
214.24 | 558.32 | 0.26 | 4.90 | 4.90 | 0.128 | |
208.34 | 559.01 | 0.28 | 5.03 | |||
202.36 | 557.65 | 0.28 | 4.77 |
表2 微波测量系统瞬时浓度测试数据
Table 2 Instantaneous concentration test data of microwave measurement system
数据采样点 | 光学检测系统颗粒物 浓度值/(mg/m3) | 微波测量系统 电压值/μV | 流速/(m/s) | 各测试点单次检定 相对示值误差/% | 各测试点相对示值 误差平均值/% | 重复性/% |
---|---|---|---|---|---|---|
6 | 0 | 514.27 | 1.12 | — | — | — |
44.28 | 544.21 | 1.12 | 5.82 | 5.58 | 0.233 | |
48.57 | 542.87 | 1.13 | 5.56 | |||
39.32 | 541.82 | 1.12 | 5.36 | |||
5 | 0 | 517.64 | 0.84 | — | — | — |
58.07 | 546.18 | 0.84 | 5.51 | 5.55 | 0.161 | |
50.27 | 547.31 | 0.84 | 5.73 | |||
54.65 | 545.68 | 0.82 | 5.42 | |||
4 | 0 | 521.56 | 0.70 | — | — | — |
64.76 | 549.63 | 0.71 | 5.38 | 5.21 | 0.150 | |
69.84 | 548.24 | 0.68 | 5.12 | |||
65.11 | 548.31 | 0.68 | 5.13 | |||
3 | 0 | 524.13 | 0.57 | — | — | — |
88.63 | 551.22 | 0.58 | 5.17 | 5.16 | 0.114 | |
85.22 | 551.73 | 0.56 | 5.27 | |||
81.45 | 550.54 | 0.57 | 5.04 | |||
2 | 0 | 528.47 | 0.42 | — | — | — |
112.41 | 554.24 | 0.43 | 4.88 | 4.86 | 0.105 | |
106.69 | 553.58 | 0.41 | 4.75 | |||
116.34 | 554.68 | 0.40 | 4.96 | |||
1 | 0 | 532.25 | 0.27 | — | — | — |
214.24 | 558.32 | 0.26 | 4.90 | 4.90 | 0.128 | |
208.34 | 559.01 | 0.28 | 5.03 | |||
202.36 | 557.65 | 0.28 | 4.77 |
1 | 邹才能, 杨智, 董大忠, 等. 非常规源岩层系油气形成分布与前景展望[J]. 地球科学, 2022, 47(5): 1517-1533. |
Zou C N, Yang Z, Dong D Z, et al. Formation, distribution and prospect of unconventional hydrocarbons in source rock strata in China[J]. Earth Science, 2022, 47(5): 1517-1533. | |
2 | 贾承造, 张永峰, 赵霞. 中国天然气工业发展前景与挑战[J]. 天然气工业,2014, 34(2): 1-11. |
Jia C Z, Zhang Y F, Zhao X. Prospects and challenges to natural gas industry development in China[J]. Natural Gas Industry, 2014, 34(2): 1-11. | |
3 | 黄维和,郑洪龙,李明菲. 我国油气储运行业发展历程及展望[J]. 油气储运,2019, 38(1): 1-11. |
Huang W H, Zheng H L, Li M F. Development history and prospect of oil & gas storage and transportation industry in China[J]. Oil & Gas Storage and Transportation, 2019, 38(1): 1-11. | |
4 | Cachia M, Carrier H, Bouyssiere B, et al. Solid particles in natural gas from a transportation network: a chemical composition study[J]. Energies, 2019, 12(20): 3866. |
5 | Azadi M, Mohebbi A, Soltaninejad S, et al. A case study on suspended particles in a natural gas urban transmission and distribution network[J]. Fuel Processing Technology, 2012, 93(1): 65-72. |
6 | 刘震, 杜华东, 胡旭, 等. 高压工况对天然气滤芯性能影响的实验研究[J]. 化工学报, 2021, 72(5): 2669-2679. |
Liu Z, Du H D, Hu X, et al. Experimental investigation of influence of high-pressure condition on filtration performance of natural gas filter cartridge[J]. CIESC Journal, 2021, 72(5): 2669-2679. | |
7 | 孙海礁, 郭玉洁, 张志宏, 等. 天然气外输管道黑粉分布规律及清除措施[J]. 石油与天然气化工, 2018, 47(6): 98-103. |
Sun H J, Guo Y J, Zhang Z H, et al. Distribution and remove measures of black powder in natural gas pipeline[J]. Chemical Engineering of Oil and Gas, 2018, 47(6): 98-103. | |
8 | 刘震, 姬忠礼, 于明俭, 等. 煤层气集输系统颗粒杂质分布及应对措施[J]. 煤炭学报, 2016, 41(9): 2281-2286. |
Liu Z, Ji Z L, Yu M J, et al. Distribution characteristics and solutions on particulate matter in coalbed methane gathering system[J]. Journal of China Coal Society, 2016, 41(9): 2281-2286. | |
9 | He J Y, Wang D, Guo D C, et al. Generation causes of black powder in the east line of the gas supply pipeline from the Liaohe oilfield: analysis and discussion[J]. Engineering Failure Analysis, 2022, 139: 106506. |
10 | Li P, Zhao Y, Liu B, et al. Experimental testing and numerical simulation to analyze the corrosion failures of single well pipelines in Tahe oilfield[J]. Engineering Failure Analysis, 2017, 80: 112-122. |
11 | 姬忠礼. 天然气输送用过滤分离设备性能测定与分析[J]. 中国石油大学学报 (自然科学版), 2013, 37(5): 145-150. |
Ji Z L. Performance measurement and analysis of filtration and separation equipment for natural gas transportation[J]. Journal of China University of Petroleum (Natural Science Edition), 2013, 37(5): 145-150. | |
12 | Saeedi A, Sargolzaei J. Fractional efficiency of porous media used for natural gas filtration[J]. Journal of Natural Gas Science and Engineering, 2021, 96: 104247. |
13 | 洪宗平, 叶楚梅, 吴洪, 等. 天然气脱碳技术研究进展[J]. 化工学报, 2021, 72(12): 6030-6048. |
Hong Z P, Ye C M, Wu H, et al. Research progress in CO2 removal technology of natural gas[J]. CIESC Journal, 2021, 72(12): 6030-6048. | |
14 | Khan T S, Al-Shehhi M S. Review of black powder in gas pipelines—an industrial perspective[J]. Journal of Natural Gas Science and Engineering, 2015, 25: 66-76. |
15 | Abou-Khousa M, Al-Durra A, Al-Wahedi K. Microwave sensing system for real-time monitoring of solid contaminants in gas flows[J]. IEEE Sensors Journal, 2015, 15(9): 5296-5302. |
16 | 陈昭, 陈猛, 王江江, 等. 非规则结构电容层析成像填补法测量的敏感场特性及重构算法改进[J]. 化工学报, 2020, 71(8): 3469-3479. |
Chen Z, Chen M, Wang J J, et al. Sensitive field characteristics and reconstruction algorithm improvement of ECT measurement with filling method in irregular structure[J]. CIESC Journal, 2020, 71(8): 3469-3479. | |
17 | 赵安, 韩云峰, 翟路生, 等. 气液两相流电容传感器相浓度测量特性 [J]. 化工学报, 2015, 66(7): 2402-2410. |
Zhao A, Han Y F, Zhai L S, et al. Characteristics of phase-concentration measurement for capacitance sensors in gas-liquid two-phase flow[J]. CIESC Journal, 2015, 66(7): 2402-2410. | |
18 | Shi X W, Tan C, Dong F, et al. Conductance sensors for multiphase flow measurement: a review[J]. IEEE Sensors Journal, 2021, 21(11): 12913-12925. |
19 | Zou J, Liu C G, Wang H G, et al. Mass flow rate measurement of bulk solids based on microwave tomography and microwave Doppler methods[J]. Powder Technology, 2020, 360: 112-119. |
20 | Zhang J, Hu H L, Dong J, et al. Concentration measurement of biomass/coal/air three-phase flow by integrating electrostatic and capacitive sensors[J]. Flow Measurement and Instrumentation, 2012, 24: 43-49. |
21 | 杨斌, 张驰, 平力, 等.循环流化床颗粒团多参数的光散射测量方法[J]. 仪器仪表学报, 2021, 42(10): 20-26. |
Yang B, Zhang C H, Ping L, et al.Light scattering measurement method for multi-parameters of particle clusters in circulating fluidized bed [J]. Chinese Journal of Scientific Instrument, 2021, 42(10): 20-26. | |
22 | Wu T Y, Horender S, Tancev G, et al. Evaluation of aerosol-spectrometer based PM2.5 and PM10 mass concentration measurement using ambient-like model aerosols in the laboratory[J]. Measurement, 2022, 201: 11761. |
23 | Takahashi K, Minoura H, Sakamoto K. Examination of discrepancies between beta-attenuation and gravimetric methods for the monitoring of particulate matter[J].Atmospheric Environment, 2008, 42(21): 5232-5240. |
24 | 张星, 姬忠礼, 陈鸿海, 等. 高压天然气管道内粉尘在线检测方法[J]. 化工学报, 2010, 61(9): 2334-2339. |
Zhang X, Ji Z L, Chen H H, et al. Method of dust online measurement in high-pressure natural gas pipeline[J]. CIESC Journal, 2010, 61(9): 2334-2339. | |
25 | Lu L F, Wu X L, Ji Z L, et al. Approach for correcting particle size distribution measured by optical particle counter in high-pressure gas pipes[J]. Applied Optics, 2018, 57(13): 3497-3506. |
26 | Lu L F, Wu X L, Ji Z L, et al. Optimization of the optical particle counter for online particle measurement in high-pressure gas[J]. Applied Optics, 2019, 58(2): 308-316. |
27 | Song X, Wu X L, Ji Z L, et al. Optimization of the optical particle counter for online particle measurement in pressure-changing natural gas[J]. Applied Optics, 2020, 59(30): 9581-9590. |
28 | Zhang F, Li J, Lu J H, et al. Optimization of circular waveguide microwave sensor for gas-solid two-phase flow parameters measurement[J]. IEEE Sensors Journal, 2021, 21(6): 7604-7612. |
29 | Zou J, Wang H G, Liu C G, et al. Real-time solid flow velocity measurement based on a microwave sensor[J]. Transactions of the Institute of Measurement and Control, 2018, 41(10): 2699-2707. |
30 | Taha W, Abou-Khousa M, Haryono A, et al. Field demonstration of a microwave black powder detection device in gas transmission pipelines[J]. Journal of Natural Gas Science and Engineering, 2020, 73: 103058. |
31 | Pozar D M. Microwave Engineering[M]. 4th ed. New York, NY, USA: Wiley, 2019: 75-129. |
32 | Johan N, Thomas R, Tomas M. Microwave measurement system for detection of dielectric objects in powders[J]. IEEE Transactions on Microwave Theory and Techniques, 2016, 64(11): 3851-3863. |
33 | Balanis C A. Advanced Engineering Electromagnetics[M]. 2nd ed. New York, NY, USA: Wiley, 2012: 527-586. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[3] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[4] | 张龙, 宋孟杰, 邵苛苛, 张旋, 沈俊, 高润淼, 甄泽康, 江正勇. 管翅式换热器迎风侧翅片末端霜层生长模拟研究[J]. 化工学报, 2023, 74(S1): 179-182. |
[5] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[6] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[7] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[8] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[9] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[10] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[11] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[12] | 赵佳佳, 田世祥, 李鹏, 谢洪高. SiO2-H2O纳米流体强化煤尘润湿性的微观机理研究[J]. 化工学报, 2023, 74(9): 3931-3945. |
[13] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[14] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[15] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 328
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 276
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||