化工学报 ›› 2023, Vol. 74 ›› Issue (11): 4397-4418.DOI: 10.11949/0438-1157.20230636
唐翠曼1(), 刘佳琦1(), 杨威1,2(), 孙钟1, 仉昊楠1, 王兵兵1, 徐小惠1()
收稿日期:
2023-06-27
修回日期:
2023-10-16
出版日期:
2023-11-25
发布日期:
2024-01-22
通讯作者:
杨威,徐小惠
作者简介:
唐翠曼(1996—),女,硕士研究生,1131559980@qq.com基金资助:
Cuiman TANG1(), Jiaqi LIU1(), Wei YANG1,2(), Zhong SUN1, Haonan ZHANG1, Bingbing WANG1, Xiaohui XU1()
Received:
2023-06-27
Revised:
2023-10-16
Online:
2023-11-25
Published:
2024-01-22
Contact:
Wei YANG, Xiaohui XU
摘要:
交叉偶联反应是构建C—C键、C—N键和C—O键的高效方法。利用有机聚合物材料作为催化剂载体进行的异相催化反应具有催化剂可回收、反应高效等优点。综述了共价有机骨架(COFs)通过负载金属构成异相催化剂,在多种交叉偶联反应中的应用;对催化效率和催化剂的循环次数进行了详细描述,并指出了该领域面临的问题与挑战。
中图分类号:
唐翠曼, 刘佳琦, 杨威, 孙钟, 仉昊楠, 王兵兵, 徐小惠. 共价有机骨架在交叉偶联反应中的应用进展[J]. 化工学报, 2023, 74(11): 4397-4418.
Cuiman TANG, Jiaqi LIU, Wei YANG, Zhong SUN, Haonan ZHANG, Bingbing WANG, Xiaohui XU. Progress in the application of covalent organic frameworks in cross-coupling reactions[J]. CIESC Journal, 2023, 74(11): 4397-4418.
COFs催化剂 | 偶联反应 | 成键方式 | 循环次数 | 图示 | 文献 |
---|---|---|---|---|---|
Pd/COF-LZU1 | Suzuki-Miyaura | C—C | 4 | 2 | [ |
Pd/H2P-Bph-COF | Suzuki-Miyaura | C—C | 4 | 3 | [ |
Pd(OAc)2@COF-300 | Suzuki-Miyaura | C—C | 5 | 4 | [ |
Heck | — | ||||
Sonogashira | — | ||||
Pd(Ⅱ)@TAT-DHBD | Suzuki-Miyaura | C—C | 3 | 6 | [ |
Pd(0)@TAT-DHBD | |||||
Pd(Ⅱ)@TAT-TFP | |||||
Pd(0)@TAT-TFP | |||||
Pd@COF-NHC | Suzuki-Miyaura | C—C | 8 | 7 | [ |
Pd NPs@Phos-COF-1 | Suzuki-Miyaura | C—C | 5 | 8 | [ |
PdAu NPs@Phos-COF-1 | tandem cross-coupling and hydride reduction of 1-bromo-4-nitrobenzene | C—C | — | 8 | [ |
HP-TpAzo@Pd | Suzuki-Miyaura | C—C | 5 | 9 | [ |
Pd NPs@TTT-COF | Suzuki-Miyaura | C—C | 4 | 10 | [ |
Stille | C—C | — | |||
Heck | C—C | — | |||
Sonogashira | C—C | — | |||
Pd@TPM-3D-COF-BPY | Suzuki-Miyaura | C—C | 5 | 11 | [ |
Pd(Ⅱ)@SP-3D-COF-BPY | Suzuki-Miyaura | C—C | 5 | 12 | [ |
NiCl@RIO-12 | Suzuki-Miyaura | C—C | 3 | 13 | [ |
Pd/COF-SMC2 | Suzuki-Miyaura | C—C | 3 | 14 | [ |
Pd@Phen-COF | Suzuki-Miyaura | C—C | 5 | 15 | [ |
Heck | C—C | ||||
Pd(0)@TpPa-1 | Heck | C—C | 4 | 16 | [ |
Sonogashira | C—C | 4 | |||
one-pot sequential Heck/Sonogashira coupling reactions | C—C | — | |||
Pd(0)-trzn-COF | Heck | C—C | 6 | 17 | [ |
Pd(Ⅱ)@Bpy-COF | Heck | C—C | 4 | 18 | [ |
Mn/Pd@Py-2, 2′-BPyPh COF | Heck-epoxidation tandem reaction | C—C | 2 | 19 | [ |
Pd/COF-BTDH | Heck | C—C | 9 | 21 | [ |
Cu@IISERP-COF9 | Glaser-Hay | C—N | 5 | 22 | [ |
Cu@MCIP-1 | Chan-Lam | C—N | 4 | 23 | [ |
Cu@PI-COF | Chan-Lam | C—N | 8 | 24 | [ |
Cu@PI-COF | Chan-Lam | C—N | 8 | 25 | [ |
sp2c-COFdpy-Ni | C—O cross-coupling reaction | C—O | 4 | 26 | [ |
表1 COFs催化的交叉偶联反应
Table 1 COFs catalyzed cross-coupling reactions
COFs催化剂 | 偶联反应 | 成键方式 | 循环次数 | 图示 | 文献 |
---|---|---|---|---|---|
Pd/COF-LZU1 | Suzuki-Miyaura | C—C | 4 | 2 | [ |
Pd/H2P-Bph-COF | Suzuki-Miyaura | C—C | 4 | 3 | [ |
Pd(OAc)2@COF-300 | Suzuki-Miyaura | C—C | 5 | 4 | [ |
Heck | — | ||||
Sonogashira | — | ||||
Pd(Ⅱ)@TAT-DHBD | Suzuki-Miyaura | C—C | 3 | 6 | [ |
Pd(0)@TAT-DHBD | |||||
Pd(Ⅱ)@TAT-TFP | |||||
Pd(0)@TAT-TFP | |||||
Pd@COF-NHC | Suzuki-Miyaura | C—C | 8 | 7 | [ |
Pd NPs@Phos-COF-1 | Suzuki-Miyaura | C—C | 5 | 8 | [ |
PdAu NPs@Phos-COF-1 | tandem cross-coupling and hydride reduction of 1-bromo-4-nitrobenzene | C—C | — | 8 | [ |
HP-TpAzo@Pd | Suzuki-Miyaura | C—C | 5 | 9 | [ |
Pd NPs@TTT-COF | Suzuki-Miyaura | C—C | 4 | 10 | [ |
Stille | C—C | — | |||
Heck | C—C | — | |||
Sonogashira | C—C | — | |||
Pd@TPM-3D-COF-BPY | Suzuki-Miyaura | C—C | 5 | 11 | [ |
Pd(Ⅱ)@SP-3D-COF-BPY | Suzuki-Miyaura | C—C | 5 | 12 | [ |
NiCl@RIO-12 | Suzuki-Miyaura | C—C | 3 | 13 | [ |
Pd/COF-SMC2 | Suzuki-Miyaura | C—C | 3 | 14 | [ |
Pd@Phen-COF | Suzuki-Miyaura | C—C | 5 | 15 | [ |
Heck | C—C | ||||
Pd(0)@TpPa-1 | Heck | C—C | 4 | 16 | [ |
Sonogashira | C—C | 4 | |||
one-pot sequential Heck/Sonogashira coupling reactions | C—C | — | |||
Pd(0)-trzn-COF | Heck | C—C | 6 | 17 | [ |
Pd(Ⅱ)@Bpy-COF | Heck | C—C | 4 | 18 | [ |
Mn/Pd@Py-2, 2′-BPyPh COF | Heck-epoxidation tandem reaction | C—C | 2 | 19 | [ |
Pd/COF-BTDH | Heck | C—C | 9 | 21 | [ |
Cu@IISERP-COF9 | Glaser-Hay | C—N | 5 | 22 | [ |
Cu@MCIP-1 | Chan-Lam | C—N | 4 | 23 | [ |
Cu@PI-COF | Chan-Lam | C—N | 8 | 24 | [ |
Cu@PI-COF | Chan-Lam | C—N | 8 | 25 | [ |
sp2c-COFdpy-Ni | C—O cross-coupling reaction | C—O | 4 | 26 | [ |
1 | Kadu B S. Suzuki-Miyaura cross coupling reaction: recent advancements in catalysis and organic synthesis[J]. Catalysis Science & Technology, 2021, 11(4): 1186-1221. |
2 | Chen J, Li J, Dong Z. A review on the latest progress of Chan-Lam coupling reaction[J]. Advanced Synthesis & Catalysis, 2020, 362(16): 3311-3331. |
3 | Fui C J, Sarjadi M S, Sarkar S M, et al. Recent advancement of ullmann condensation coupling reaction in the formation of aryl-oxygen (C—O) bonding by copper-mediated catalyst[J]. Catalysts, 2020, 10(10): 1103-1153. |
4 | Torborg C, Beller M. Recent applications of palladium-catalyzed coupling reactions in the pharmaceutical, agrochemical, and fine chemical industries[J]. Advanced Synthesis & Catalysis, 2009, 351(18): 3027-3043. |
5 | Corona S P, Generali D. Abemaciclib: a CDK4/6 inhibitor for the treatment of HR+/HER2-advanced breast cancer[J]. Drug Design, Development and Therapy, 2018, 12: 321-330. |
6 | Labelle M, Belley M, Gareau Y, et al. Discovery of MK-0476, a potent and orally active leukotriene D4 receptor antagonist devoid of peroxisomal enxyme induction[J]. Bioorganic & Medicinal Chemistry Letters, 1995, 5(3): 283-288. |
7 | Capi M, de Andrés F, Lionetto L, et al. Lasmiditan for the treatment of migraine[J]. Expert Opinion on Investigational Drugs, 2017, 26(2): 227-234. |
8 | Echavarren J, Gall M A Y, Haertsch A, et al. Active template rotaxane synthesis through the Ni-catalyzed cross-coupling of alkylzinc reagents with redox-active esters[J]. Chemical Science, 2019, 10(30): 7269-7273. |
9 | Wurtz A. Ueber eine neue klasse organischer radicale[J]. Justus Liebigs Annalen Der Chemie, 1855, 96(3): 364-375. |
10 | Cassar L. Synthesis of aryl- and vinyl-substituted acetylene derivatives by the use of nickel and palladium complexes[J]. Journal of Organometallic Chemistry, 1975, 93(2): 253-257. |
11 | Heck R F. Acylation, methylation, and carboxyalkylation of olefins by group Ⅷ metal derivatives [J]. Journal of the American Chemical Society, 1968, 90(20): 5518-5526. |
12 | Suzuki A. Organoborates in new synthetic reactions[J]. Accounts of Chemical Research, 1982, 15(6): 178-184. |
13 | Devendar P, Qu R Y, Kang W M, et al. Palladium-catalyzed cross-coupling reactions: a powerful tool for the synthesis of agrochemicals[J]. Journal of Agricultural and Food Chemistry, 2018, 66(34): 8914-8934. |
14 | Dawson D D, Oswald V F, Borovik A S, et al. Identification of the active catalyst for nickel-catalyzed stereospecific kumada coupling reactions of ethers[J]. Chemistry-A European Journal, 2020, 26(14): 3044-3048. |
15 | Rout L, Punniyamurthy T. Recent advances in transition-metal-mediated Csp2-B and Csp2-P cross-coupling reactions[J]. Coordination Chemistry Reviews, 2021, 431: 213675. |
16 | Ma X H, Murray B, Biscoe M R. Stereoselectivity in Pd-catalysed cross-coupling reactions of enantioenriched nucleophiles[J]. Nature Reviews Chemistry, 2020, 4(11): 584-599. |
17 | Till N A, Oh S, MacMillan D W C, et al. The application of pulse radiolysis to the study of Ni(Ⅰ) intermediates in Ni-catalyzed cross-coupling reactions[J]. Journal of the American Chemical Society, 2021, 143(25): 9332-9337. |
18 | Chen J K, Yin C L, Zhou J, et al. Ir(Ⅲ)-catalyzed and Ag2O-promoted C—H/C—H cross-coupling/intramolecular cyclization of ketene dithioacetals with benzothiophene[J]. Advanced Synthesis & Catalysis, 2021, 363(18): 4360-4364. |
19 | Polshettiwar V, Len C, Fihri A. Silica-supported palladium: sustainable catalysts for cross-coupling reactions[J]. Coordination Chemistry Reviews, 2009, 253(21/22): 2599-2626. |
20 | 高婷婷, 姬广斌. Pd/CMK-3的合成及其在Suzuki-Miyaura碳-碳偶联反应中的应用[J]. 化工学报, 2011, 62(2): 515-519. |
Gao T T, Ji G B. Synthesis of Pd/CMK-3 and its application in Suzuki-Miyaura carbon-carbon coupling reaction[J]. CIESC Journal, 2011, 62(2): 515-519. | |
21 | Dewan A, Sarmah M, Bharali P, et al. Pd nanoparticles-loaded honeycomb-structured bio-nanocellulose as a heterogeneous catalyst for heteroaryl cross-coupling reaction[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(2): 954-966. |
22 | Xiang Z H, Cao D P. Porous covalent-organic materials: synthesis, clean energy application and design[J]. Journal of Materials Chemistry A, 2013, 1(8): 2691-2718. |
23 | Li H L, Eddaoudi M, O’Keeffe M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature, 1999, 402(6759): 276-279. |
24 | Zhou H C, Long J, Yaghi O. Introduction to metal-organic frameworks[J]. Chemical Reviews, 2012, 112(2): 673-674. |
25 | Dhakshinamoorthy A, Asiri A M, Garcia H. Metal-organic frameworks catalyzed C—C and C—heteroatom coupling reactions[J]. Chemical Society Reviews, 2015, 44(7): 1922-1947. |
26 | Hong K, Sajjadi M, Suh J M, et al. Palladium nanoparticles on assorted nanostructured supports: applications for suzuki, heck, and sonogashira cross-coupling reactions[J]. ACS Applied Nano Materials, 2020, 3(3): 2070-2103. |
27 | Sadeghi S, Jafarzadeh M, Abbasi A R, et al. Incorporation of CuO NPs into modified UiO-66-NH2 metal-organic frameworks (MOFs) with melamine for catalytic C—O coupling in the Ullmann condensation[J]. New Journal of Chemistry, 2017, 41(20): 12014-12027. |
28 | He T, Kong X J, Zhou J A, et al. A practice of reticular chemistry: construction of a robust mesoporous palladium metal-organic framework via metal metathesis[J]. Journal of the American Chemical Society, 2021, 143(26): 9901-9911. |
29 | Rodríguez-San-Miguel D, Montoro C, Zamora F. Covalent organic framework nanosheets: preparation, properties and applications[J]. Chemical Society Reviews, 2020, 49(8): 2291-2302. |
30 | Zeng Y F, Zou R Y, Luo Z, et al. Covalent organic frameworks formed with two types of covalent bonds based on orthogonal reactions[J]. Journal of the American Chemical Society, 2015, 137(3): 1020-1023. |
31 | Guan Q, Zhou L L, Dong Y B. Metalated covalent organic frameworks: from synthetic strategies to diverse applications[J]. Chemical Society Reviews, 2022, 51(15): 6307-6416. |
32 | Côté A P, Benin A I, Ockwig N W, et al. Porous, crystalline, covalent organic frameworks[J]. Science, 2005, 310(5751): 1166-1170. |
33 | Sahoo R, Mondal S, Pal S C, et al. Covalent-organic frameworks (COFs) as proton conductors[J]. Advanced Energy Materials, 2021, 11(39): 2102300. |
34 | Haldar S, Chakraborty D, Roy B, et al. Anthracene-resorcinol derived covalent organic framework as flexible white light emitter[J]. Journal of the American Chemical Society, 2018, 140(41): 13367-13374. |
35 | Liang L, Chen J, Chen X W, et al. In situ synthesis of a GO/COFs composite with enhanced adsorption performance for organic pollutants in water[J]. Environmental Science: Nano, 2022, 9(2): 554-567. |
36 | Emmerling S T, Maschita J, Lotsch B V. Nitric oxide (NO) as a reagent for topochemical framework transformation and controlled NO release in covalent organic frameworks[J]. Journal of the American Chemical Society, 2023, 145(14): 7800-7809. |
37 | Xu Y N, Wu T T, Cui Z W, et al. In situ growth of COFs within wood microchannels for wastewater treatment and oil-water separation[J]. Separation and Purification Technology, 2022, 303: 122275. |
38 | Traxler M, Gisbertz S, Pachfule P, et al. Acridine-functionalized covalent organic frameworks (COFs) as photocatalysts for metallaphotocatalytic C—N cross-coupling[J]. Angewandte Chemie International Edition, 2022, 61(21): e202117738. |
39 | Zong H, Liu W C, Li M S, et al. Oxygen-terminated Nb2CO2 MXene with interfacial self-assembled COF as a bifunctional catalyst for durable zinc-air batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(8): 10738-10746. |
40 | Song S H, Wang D D, Zhao K, et al. Donor-acceptor structured photothermal COFs for enhanced starvation therapy[J]. Chemical Engineering Journal, 2022, 442: 135963. |
41 | Zhao X J, Pachfule P, Thomas A. Covalent organic frameworks (COFs) for electrochemical applications[J]. Chemical Society Reviews, 2021, 50(12): 6871-6913. |
42 | Wang X R, Han X, Zhang J E, et al. Homochiral 2D porous covalent organic frameworks for heterogeneous asymmetric catalysis[J]. Journal of the American Chemical Society, 2016, 138(38): 12332-12335. |
43 | Diercks C S, Yaghi O M. The atom, the molecule, and the covalent organic framework[J]. Science, 2017, 355(6328): eaal1585. |
44 | Ding S Y, Gao J A, Wang Q, et al. Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction[J]. Journal of the American Chemical Society, 2011, 133(49): 19816-19822. |
45 | Hou Y X, Zhang X M, Sun J S, et al. Good Suzuki-coupling reaction performance of Pd immobilized at the metal-free porphyrin-based covalent organic framework[J]. Microporous and Mesoporous Materials, 2015, 214: 108-114. |
46 | Gonçalves R S B, de Oliveira A B V, Sindra H C, et al. Heterogeneous catalysis by covalent organic frameworks (COF): Pd(OAc)2@COF-300 in cross-coupling reactions[J]. ChemCatChem, 2016, 8(4): 743-750. |
47 | Kaleeswaran D, Antony R, Sharma A, et al. Catalysis and CO2 capture by palladium-incorporated covalent organic frameworks[J]. ChemPlusChem, 2017, 82(10): 1253-1265. |
48 | Yang J J, Wu Y Y, Wu X W, et al. An N-heterocyclic carbene-functionalised covalent organic framework with atomically dispersed palladium for coupling reactions under mild conditions[J]. Green Chemistry, 2019, 21(19): 5267-5273. |
49 | Tao R, Shen X R, Hu Y M, et al. Broad-scope ultrafine nanoparticles: phosphine-based covalent organic framework for the controlled synthesis of broad-scope ultrafine nanoparticles[J]. Small, 2020, 16(8): e1906005 |
50 | Qiu J K, Wang H Y, Zhao Y L, et al. Hierarchically porous covalent organic frameworks assembled in ionic liquids for highly effective catalysis of C—C coupling reactions[J]. Green Chemistry, 2020, 22(8): 2605-2612. |
51 | Yang Y L, Niu H Y, Zhao W J, et al. Ultrafine Pd nanoparticles loaded benzothiazole-linked covalent organic framework for efficient photocatalytic C—C cross-coupling reactions[J]. RSC Advances, 2020, 10(49): 29402-29407. |
52 | Sun Q Z, Wu C Y, Pan Q Y, et al. Three-dimensional covalent-organic frameworks loaded with highly dispersed ultrafine palladium nanoparticles as efficient heterogeneous catalyst[J]. ChemNanoMat, 2021, 7(1): 95-99. |
53 | Liu Y M, Wu C Y, Sun Q Z, et al. Spirobifluorene-based three-dimensional covalent organic frameworks with rigid topological channels as efficient heterogeneous catalyst[J]. CCS Chemistry, 2021, 3(4): 2418-2427. |
54 | Maia R A, Berg F, Ritleng V, et al. Design, synthesis and characterization of nickel-functionalized covalent organic framework NiCl@RIO-12 for heterogeneous suzuki-miyaura catalysis[J]. Chemistry-A European Journal, 2020, 26(9): 2051-2059. |
55 | Liu J G, Zhan H, Wang N, et al. Palladium nanoparticles on covalent organic framework supports as catalysts for Suzuki-Miyaura cross-coupling reactions[J]. ACS Applied Nano Materials, 2021, 4(6): 6239-6249. |
56 | López-Magano A, Mas-Ballesté R, Alemán J. Predesigned covalent organic frameworks as effective platforms for Pd(Ⅱ) coordination enabling cross-coupling reactions under sustainable conditions[J]. Advanced Sustainable Systems, 2022, 6(3): 2100409. |
57 | Pachfule P, Panda M K, Kandambeth S, et al. Multifunctional and robust covalent organic framework-nanoparticle hybrids[J]. Journal of Materials Chemistry A, 2014, 2(21): 7944-7952. |
58 | Mullangi D, Nandi S, Shalini S, et al. Pd loaded amphiphilic COF as catalyst for multi-fold Heck reactions, C—C couplings and CO oxidation[J]. Scientific Reports, 2015, 5: 10876. |
59 | Zhang J Q, Peng Y S, Leng W G, et al. Nitrogen ligands in two-dimensional covalent organic frameworks for metal catalysis[J]. Chinese Journal of Catalysis, 2016, 37(4): 468-475. |
60 | Leng W G, Ge R L, Dong B, et al. Bimetallic docked covalent organic frameworks with high catalytic performance towards tandem reactions[J]. RSC Advances, 2016, 6(44): 37403-37406. |
61 | Han J Y, Sun X W, Wang X, et al. Covalent organic framework as a heterogeneous ligand for the regioselective oxidative heck reaction[J]. Organic Letters, 2020, 22(4): 1480-1484. |
62 | Chakraborty D, Nandi S, Mullangi D, et al. Cu/Cu2O nanoparticles supported on a phenol-pyridyl COF as a heterogeneous catalyst for the synthesis of unsymmetrical diynes via glaser-hay coupling[J]. ACS Applied Materials & Interfaces, 2019, 11(17): 15670-15679. |
63 | Puthiaraj P, Pitchumani K. Triazine-based mesoporous covalent imine polymers as solid supports for copper-mediated Chan-Lam cross-coupling N-arylation reactions[J]. Chemistry-A European Journal, 2014, 20(28): 8761-8770. |
64 | Han Y, Zhang M, Zhang Y Q, et al. Copper immobilized at a covalent organic framework: an efficient and recyclable heterogeneous catalyst for the Chan-Lam coupling reaction of aryl boronic acids and amines[J]. Green Chemistry, 2018, 20(21): 4891-4900. |
65 | 刘恒烁, 遇治权, 孙志超, 等. COF固载铜盐催化苯硼酸与咪唑的Chan-Lam偶联反应[J]. 高等学校化学学报, 2020, 41(5): 1091-1100. |
Liu H S, Yu Z Q, Sun Z C, et al. Copper salt anchored on a covalent organic framework as heterogeneous catalyst for Chan-Lam coupling reaction[J]. Chemical Journal of Chinese Universities, 2020, 41(5): 1091-1100. | |
66 | Dong W B, Yang Y, Xiang Y G, et al. A highly stable all-in-one photocatalyst for aryl etherification: the NiⅡ embedded covalent organic framework[J]. Green Chemistry, 2021, 23(16): 5797-5805. |
67 | Singh G, Singh P A, Sen A K, et al. Synthesis and characterization of some bivalent metal complexes of schiff bases derived from as-triazine[J]. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 2002, 32(1): 171-187. |
68 | Lu S L, Hu Y M, Wan S, et al. Synthesis of ultrafine and highly dispersed metal nanoparticles confined in a thioether-containing covalent organic framework and their catalytic applications[J]. Journal of the American Chemical Society, 2017, 139(47): 17082-17088. |
69 | Ma H C, Kan J L, Chen G J, et al. Pd NPs-loaded homochiral covalent organic framework for heterogeneous asymmetric catalysis[J]. Chemistry of Materials, 2017, 29(15): 6518-6524. |
70 | Duan Z L, Li W, Lei A W. Nickel-catalyzed reductive cross-coupling of aryl bromides with alkyl bromides: Et3N as the terminal reductant[J]. Organic Letters, 2016, 18(16): 4012-4015. |
71 | Paul A, Smith M D, Vannucci A K. Photoredox-assisted reductive cross-coupling: mechanistic insight into catalytic aryl-alkyl cross-couplings[J]. The Journal of Organic Chemistry, 2017, 82(4): 1996-2003. |
[1] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[2] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[3] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[4] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[5] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[6] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[7] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[8] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[9] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[10] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[11] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
[12] | 王辰, 史秀锋, 武鲜凤, 魏方佳, 张昊虹, 车寅, 吴旭. 氧化还原法制备Mn3O4催化剂及其甲苯催化氧化性能与机理研究[J]. 化工学报, 2023, 74(6): 2447-2457. |
[13] | 李勇, 高佳琦, 杜超, 赵亚丽, 李伯琼, 申倩倩, 贾虎生, 薛晋波. Ni@C@TiO2核壳双重异质结的构筑及光热催化分解水产氢[J]. 化工学报, 2023, 74(6): 2458-2467. |
[14] | 朱理想, 罗默也, 张晓东, 龙涛, 余冉. 醌指纹法指示三氯乙烯污染土功能微生物活性应用研究[J]. 化工学报, 2023, 74(6): 2647-2654. |
[15] | 张希庆, 王琰婷, 徐彦红, 常淑玲, 孙婷婷, 薛定, 张立红. Mg量影响的纳米片负载Pt-In催化异丁烷脱氢性能[J]. 化工学报, 2023, 74(6): 2427-2435. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||