化工学报 ›› 2023, Vol. 74 ›› Issue (10): 3979-3994.DOI: 10.11949/0438-1157.20230739

• 综述与专论 •    下一篇

化学链制化学品工艺及循环材料研究进展

张榕江(), 张博, 刘根, 杨伯伦, 吴志强()   

  1. 西安交通大学化学工程与技术学院,陕西省能源化工过程强化重点实验室,陕西 西安 710049
  • 收稿日期:2023-07-17 修回日期:2023-09-08 出版日期:2023-10-25 发布日期:2023-12-22
  • 通讯作者: 吴志强
  • 作者简介:张榕江(1994—),男,博士研究生,zhangrj@stu.xjtu.edu.cn
  • 基金资助:
    国家自然科学基金项目(22038011);陕西省创新能力支撑计划项目(2023KJXX-004)

Progress in chemical looping process for chemical production and looping materials research

Rongjiang ZHANG(), Bo ZHANG, Gen LIU, Bolun YANG, Zhiqiang WU()   

  1. Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
  • Received:2023-07-17 Revised:2023-09-08 Online:2023-10-25 Published:2023-12-22
  • Contact: Zhiqiang WU

摘要:

化学链技术在化学品生产过程强化方面表现出极大潜力,相较于传统工艺可提高㶲效率并降低碳排放。综述了目前常见的化学链制化学品工艺,主要包括化学链重整/部分氧化制合成气和氢气、低碳烷烃化学链氧化脱氢/选择性氢燃烧制烯烃、甲烷化学链氧化偶联制乙烯、甲烷化学链脱氢芳构化制苯、化学链选择性氧化制含氧有机化合物(如甲醇、环氧乙烷和甲酸等)。深入理解载氧体理化性质与化学链反应性能间的构效关系有助于实现载氧体理性设计。目前在载氧体设计方面已具备坚实的理论基础,从利用氧化物的热力学平衡氧分压筛选载氧体活性组分,到基于表面工程策略调控晶格氧释放动力学,再到通过合理构建结构和电子描述符,深入剖析载氧体性能强化策略。实验和密度泛函理论(DFT)计算数据驱动的可解释机器学习可实现载氧体的高通量筛选,极大拓宽了载氧体筛选范围,并降低试错成本。随着化学链技术的发展,载氧体这一概念可被进一步拓展至循环材料,如载氮体和载氯体等。光/电驱动的化学链过程为在低温或室温下实现高附加值产物的合成提供了新思路,拓宽了化学链技术的应用范围。此外,化学链技术还可用于共沸有机物分离过程强化,对低成本、低污染和低排放分离过程的开发具有重要意义。

关键词: 化学链, 重整, 载氧体, 循环材料, 选择性氧化

Abstract:

Chemical looping technology demonstrates significant potential for enhancing chemical production processes compared to traditional processes, resulting in increased exergy efficiency and reduced carbon emissions. This review focuses on common chemical looping processes for chemical production, including chemical looping reforming/partial oxidation (CLR/CLPO) of methane for syngas and hydrogen production, light alkanes chemical looping oxidative dehydrogenation (CL-ODH) or chemical looping selective hydrogen combustion (CL-SHC) for olefin production, chemical looping oxidation coupling of methane (CL-OCM) for ethylene production, chemical looping dehydrogenation aromatization (CL-DHA) of methane for benzene production, and chemical looping selective oxidation (CL-SO) for oxygen-containing organic compound production (such as methanol, ethylene oxide, and formic acid). A fundamental understanding of the structure-activity relationship between the textual properties of oxygen carriers and chemical looping reaction performance is paramount for achieving the rational design of oxygen carriers. At present, we have a solid theoretical foundation in the design of oxygen carriers. We use the thermodynamic equilibrium oxygen partial pressure of oxides to screen the active components of oxygen carriers, and from controlling the lattice oxygen release kinetics based on surface engineering strategies to in-depth analysis of oxygen carrier performance enhancement strategies through the rational construction of structural and electronic descriptors. Experimental and density functional theory (DFT) computational data-driven interpretable machine learning (ML) can enable high-throughput screening of oxygen carriers, which greatly broadens the screening range and reduces the cost of experiment time. With the development of chemical looping technology, the concept of oxygen carrier can be further extended to looping material (LM), such as nitrogen and chloride carriers. Photo/electro-driven chemical looping processes provide new routes to synthesize high-value-added products at low temperatures or even room temperatures, thereby broadening the application scope of chemical looping technology. Additionally, chemical looping technology can be applied to enhance the separation process of binary azeotropic organic mixtures, which is of great significance for developing low-cost, low-pollution, and low-emission separation processes.

Key words: chemical looping, reforming, oxygen carriers, looping materials, selective oxidation

中图分类号: