1 |
Yan B H, Wang C, Li L G. The technology of micro heat pipe cooled reactor: a review[J]. Annals of Nuclear Energy, 2020, 135: 106948.
|
2 |
Ling L, Zhang Q, Yu Y B, et al. A state-of-the-art review on the application of heat pipe system in data centers[J]. Applied Thermal Engineering, 2021, 199: 117618.
|
3 |
Huang J L, Wang C L, Guo K L, et al. Heat transfer analysis of heat pipe cooled device with thermoelectric generator for nuclear power application[J]. Nuclear Engineering and Design, 2022, 390: 111652.
|
4 |
Ma Y G, Han W B, Xie B H, et al. Coupled neutronic, thermal-mechanical and heat pipe analysis of a heat pipe cooled reactor[J]. Nuclear Engineering and Design, 2021, 384: 111473.
|
5 |
Shoeibi S, Ali Agha Mirjalily S, Kargarsharifabad H, et al. A comprehensive review on performance improvement of solar desalination with applications of heat pipes[J]. Desalination, 2022, 540: 115983.
|
6 |
Sun Y L, Zhang S W, Chen G, et al. Experimental and numerical investigation on a novel heat pipe based cooling strategy for permanent magnet synchronous motors[J]. Applied Thermal Engineering, 2020, 170: 114970.
|
7 |
田中轩, 王长宏, 郑焕培, 等. LED平板热管散热系统的性能分析[J]. 化工学报, 2017, 68(S1): 155-161.
|
|
Tian Z X, Wang C H, Zheng H P, et al. Heat transfer characteristic of flat plate heat pipe cooling system for LED[J]. CIESC Journal, 2017, 68(S1): 155-161.
|
8 |
魏进家, 刘蕾, 杨小平. 面向高热流电子器件散热的环路热管研究进展[J]. 化工学报, 2023, 74(1): 60-73.
|
|
Wei J J, Liu L, Yang X P. Research progress of loop heat pipes for heat dissipation of high-heat-flux electronic devices[J]. CIESC Journal, 2023, 74(1): 60-73.
|
9 |
Zhang X, Jiang D Y, Wang H, et al. Experimental analysis on the evaporator startup behaviors in a trapezoidally grooved heat pipe[J]. Applied Thermal Engineering, 2021, 199: 117558.
|
10 |
Khalid S U, Hasnain S, Ali H M, et al. Experimental investigation of aluminum fins on relative thermal performance of sintered copper wicked and grooved heat pipes[J]. Progress in Nuclear Energy, 2022, 152: 104374.
|
11 |
Gökçe G, Kurt C, Odabaşı G, et al. Comprehensive three-dimensional hydrodynamic and thermal modeling of steady-state operation of a flat grooved heat pipe[J]. International Journal of Multiphase Flow, 2023, 160: 104370.
|
12 |
Fravallo P Y, Prat M, Platel V. Numerical study of flow and heat transfer in the vapour grooves of a loop heat pipe evaporator[J]. International Journal of Thermal Sciences, 2022, 171: 107198.
|
13 |
Zhang D W, He Z T, Guan J, et al. Heat transfer and flow visualization of pulsating heat pipe with silica nanofluid: an experimental study[J]. International Journal of Heat and Mass Transfer, 2022, 183: 122100.
|
14 |
Chen J W, Cen J W, Huang W B, et al. Multiphase flow and heat transfer characteristics of an extra-long gravity-assisted heat pipe: an experimental study[J]. International Journal of Heat and Mass Transfer, 2021, 164: 120564.
|
15 |
Pagliarini L, Cattani L, Mameli M, et al. Global and local heat transfer behaviour of a three-dimensional pulsating heat pipe: combined effect of the heat load, orientation and condenser temperature[J]. Applied Thermal Engineering, 2021, 195: 117144.
|
16 |
Wayner P C, Kao Y K, LaCroix L V. The interline heat-transfer coefficient of an evaporating wetting film[J]. International Journal of Heat and Mass Transfer, 1976, 19(5): 487-492.
|
17 |
Schneider G, Yovanovich M, Wehrle V. Thermal analysis of trapezoidal grooved heat pipe evaporator walls[C]//Proceedings of the 11th Thermophysics Conference. Reston, Virigina: AIAA, 1976: AIAA1976-481.
|
18 |
Shekriladze I G, Rusishvili J G. Evaporation and condensation on grooved capillary surfaces[C]//Proc. 6th Int. Heat Pipe Conf. 1987: 234-239.
|
19 |
田东民, 吴延鹏, 陈凤君. 基于纳米增强相变材料的铜-水热管传热性能分析[J]. 化工学报, 2020, 71(S1): 220-226.
|
|
Tian D M, Wu Y P, Chen F J. Analysis of heat transfer performance of copper-water heat pipe based on nano enhanced-PCM[J]. CIESC Journal, 2020, 71(S1): 220-226.
|
20 |
张磊, 戴叶, 陈兴伟, 等. 折弯异型对铜-水热管传热性能影响的实验研究[J]. 化工学报, 2021, 72(10): 5132-5141.
|
|
Zhang L, Dai Y, Chen X W, et al. Experimental research on influence of abnormal shape on heat transfer performance of copper-water heat pipe[J]. CIESC Journal, 2021, 72(10): 5132-5141.
|
21 |
Wayner P C. Adsorption and capillary condensation at the contact line in change of phase heat transfer[J]. International Journal of Heat and Mass Transfer, 1982, 25(5): 707-713.
|
22 |
Wang H, Garimella S V, Murthy J Y. Characteristics of an evaporating thin film in a microchannel[J]. International Journal of Heat and Mass Transfer, 2007, 50(19/20): 3933-3942.
|
23 |
Hu Z H, Gong S A. Mesoscopic model for disjoining pressure effects in nanoscale thin liquid films and evaporating extended meniscuses[J]. Langmuir, 2023, 39(37): 13359-13370.
|
24 |
Stephan P C, Busse C A. Analysis of the heat transfer coefficient of grooved heat pipe evaporator walls[J]. International Journal of Heat and Mass Transfer, 1992, 35(2): 383-391.
|
25 |
Lay J H, Dhir V K. Shape of a vapor stem during nucleate boiling of saturated liquids[J]. Journal of Heat Transfer, 1995, 117(2): 394-401.
|
26 |
Raj R, Kunkelmann C, Stephan P, et al. Contact line behavior for a highly wetting fluid under superheated conditions[J]. International Journal of Heat and Mass Transfer, 2012, 55(9/10): 2664-2675.
|
27 |
Kamotani Y. Evaporator film coefficients of grooved heat pipes[C]//Proceedings of the 3rd International Heat Pipe Conference. Reston, Virigina: AIAA, 1978: AIAA1978-404.
|
28 |
Holm F W, Goplen S P. Heat transfer in the meniscus thin-film transition region[J]. Journal of Heat Transfer, 1979, 101(3): 543-547.
|
29 |
Derjaguin B V, Nerpin S V, Churaev N V. Effect of film transfer upon evaporation of liquids from capillaries[J]. Bulletin Rilem, 1965, 29: 93-98.
|
30 |
Israelachvili J N. Intermolecular and Surface Forces[M]. 3rd ed. Academic Press, 2011.
|
31 |
高洪敬. 无量纲毛细压力函数及毛细压力对流动特性影响的分形分析[D]. 武汉: 华中科技大学, 2014.
|
|
Gao H J. Dimensionless capillary pressure function and fractal analysis of the influence of capillary pressure on flow characteristics[D]. Wuhan: Huazhong University of Science and Technology, 2014.
|