化工学报 ›› 2023, Vol. 74 ›› Issue (11): 4515-4526.DOI: 10.11949/0438-1157.20230985
收稿日期:
2023-09-21
修回日期:
2023-11-06
出版日期:
2023-11-25
发布日期:
2024-01-22
通讯作者:
赵红霞
作者简介:
陈壮(1999—),男,硕士,chenzhuang_cg@163.com
基金资助:
Zhuang CHEN1(), Guangdi LI1,2, Hongxuan ZENG1, Hongxia ZHAO1(
)
Received:
2023-09-21
Revised:
2023-11-06
Online:
2023-11-25
Published:
2024-01-22
Contact:
Hongxia ZHAO
摘要:
作为CO2制冷/热泵系统重要的节能部件,喷射器的工作能力对系统性能的提升有着重要影响。尽管CO2喷射器的结构简单,但其内部流动十分复杂,包含非平衡相变、跨声速和马赫波等物理现象。为此,本研究建立了用于CO2两相流模拟的均相弛豫模型(HRM),通过实验数据验证了模型的可靠性,并以此开展了对可调式喷射器的数值研究,分析了有无探针、探针位置和工况变化对可调式喷射器性能和内部流动的影响。研究结果表明,探针增加了一次流的不可逆损失,同时也改变了喷嘴出口一次流的膨胀状态;通过探针调整喷嘴喉部面积,提高了喷射器适应不同工况运行的能力,使喷射器在不同工况下保持最佳的运行状态;与固定式喷射器相比,可调式喷射器效率平均提升10.74%。
中图分类号:
陈壮, 刘光弟, 曾宏轩, 赵红霞. 跨临界CO2两相流可调式喷射器的流动模拟和性能分析[J]. 化工学报, 2023, 74(11): 4515-4526.
Zhuang CHEN, Guangdi LI, Hongxuan ZENG, Hongxia ZHAO. Flow simulation and performance analysis of adjustable ejector for trans-critical CO2 two-phase flow[J]. CIESC Journal, 2023, 74(11): 4515-4526.
几何参数 | 数值 |
---|---|
探针直径Dne/mm | 1.78 |
喷嘴入口直径Din/mm | 4.99 |
喷嘴喉部直径Dth/mm | 1.76 |
混合室直径Dmix/mm | 3.46 |
扩散室出口直径Dej,out/mm | 8.35 |
探针长度Lne/mm | 2.40 |
喷嘴收敛段长度Lcon/mm | 9.16 |
喷嘴扩散段长度Ldif/mm | 6.32 |
喷嘴出口位置NXP/mm | 6.00 |
混合室长度Lmix/mm | 15.00 |
扩散室长度Lej,dif/mm | 70.00 |
探针位置Lp/mm | 0~2.40 |
表1 可调喷射器的几何参数
Table 1 Geometrical parameters of the adjustable ejector
几何参数 | 数值 |
---|---|
探针直径Dne/mm | 1.78 |
喷嘴入口直径Din/mm | 4.99 |
喷嘴喉部直径Dth/mm | 1.76 |
混合室直径Dmix/mm | 3.46 |
扩散室出口直径Dej,out/mm | 8.35 |
探针长度Lne/mm | 2.40 |
喷嘴收敛段长度Lcon/mm | 9.16 |
喷嘴扩散段长度Ldif/mm | 6.32 |
喷嘴出口位置NXP/mm | 6.00 |
混合室长度Lmix/mm | 15.00 |
扩散室长度Lej,dif/mm | 70.00 |
探针位置Lp/mm | 0~2.40 |
名称 | 设置 | |
---|---|---|
求解算法 | pressure-based coupled algorithm | |
空间离散方式 | 梯度 | least squares cell-based |
压力项 | PRESTO! | |
其他项 | second order upwind | |
喷射器入口边界 | pressure-inlet | |
喷射器出口边界 | pressure-outlet | |
湍流边界 | turbulent intensity and hydraulic diameter |
表2 Fluent的设置方案
Table 2 Setup program for Fluent
名称 | 设置 | |
---|---|---|
求解算法 | pressure-based coupled algorithm | |
空间离散方式 | 梯度 | least squares cell-based |
压力项 | PRESTO! | |
其他项 | second order upwind | |
喷射器入口边界 | pressure-inlet | |
喷射器出口边界 | pressure-outlet | |
湍流边界 | turbulent intensity and hydraulic diameter |
组别 | 一次流入口 | 二次流入口 | 压力升程 | 质量流量/(kg/s) | |||
---|---|---|---|---|---|---|---|
Pp/MPa | Tp/℃ | Ps/MPa | Ts/℃ | Plift/MPa | mp | ms | |
1 | 7.70 | 32.10 | 4.35 | 23.60 | 0.43 | 0.0273 | 0.0131 |
2 | 7.78 | 32.40 | 4.34 | 23.50 | 0.43 | 0.0279 | 0.0150 |
3 | 7.93 | 33.30 | 4.36 | 23.20 | 0.44 | 0.0278 | 0.0167 |
4 | 8.07 | 34.20 | 4.35 | 23.0 | 0.45 | 0.0277 | 0.0183 |
5 | 8.21 | 35.20 | 4.34 | 22.70 | 0.47 | 0.0276 | 0.0193 |
6 | 8.29 | 35.60 | 4.21 | 22.0 | 0.46 | 0.0274 | 0.0225 |
7 | 8.30 | 35.70 | 4.22 | 22.20 | 0.49 | 0.0273 | 0.0195 |
8 | 8.38 | 36.50 | 4.32 | 22.70 | 0.48 | 0.0273 | 0.0206 |
9 | 8.65 | 39.0 | 4.29 | 22.50 | 0.51 | 0.0265 | 0.0217 |
10 | 8.80 | 41.0 | 4.28 | 22.60 | 0.53 | 0.0264 | 0.0225 |
11 | 8.96 | 43.40 | 4.28 | 22.50 | 0.55 | 0.0258 | 0.0231 |
表3 模型可靠性验证所用实验数据[30]
Table 3 Experimental data for model reliability validation[30]
组别 | 一次流入口 | 二次流入口 | 压力升程 | 质量流量/(kg/s) | |||
---|---|---|---|---|---|---|---|
Pp/MPa | Tp/℃ | Ps/MPa | Ts/℃ | Plift/MPa | mp | ms | |
1 | 7.70 | 32.10 | 4.35 | 23.60 | 0.43 | 0.0273 | 0.0131 |
2 | 7.78 | 32.40 | 4.34 | 23.50 | 0.43 | 0.0279 | 0.0150 |
3 | 7.93 | 33.30 | 4.36 | 23.20 | 0.44 | 0.0278 | 0.0167 |
4 | 8.07 | 34.20 | 4.35 | 23.0 | 0.45 | 0.0277 | 0.0183 |
5 | 8.21 | 35.20 | 4.34 | 22.70 | 0.47 | 0.0276 | 0.0193 |
6 | 8.29 | 35.60 | 4.21 | 22.0 | 0.46 | 0.0274 | 0.0225 |
7 | 8.30 | 35.70 | 4.22 | 22.20 | 0.49 | 0.0273 | 0.0195 |
8 | 8.38 | 36.50 | 4.32 | 22.70 | 0.48 | 0.0273 | 0.0206 |
9 | 8.65 | 39.0 | 4.29 | 22.50 | 0.51 | 0.0265 | 0.0217 |
10 | 8.80 | 41.0 | 4.28 | 22.60 | 0.53 | 0.0264 | 0.0225 |
11 | 8.96 | 43.40 | 4.28 | 22.50 | 0.55 | 0.0258 | 0.0231 |
1 | Drake F. Stratospheric ozone depletion—an overview of the scientific debate[J]. Progress in Physical Geography, 1995, 19(1): 1-17. |
2 | Lashof D A, Ahuja D R. Relative contributions of greenhouse gas emissions to global warming[J]. Nature, 1990, 344(6266): 529-531. |
3 | Lorentzen G. The use of natural refrigerants: a complete solution to the CFC/HCFC predicament[J]. International Journal of Refrigeration, 1995, 18(3): 190-197. |
4 | Nekså P, Hafner A, Bredesen A, et al. CO2 as working fluid—technological development on the road to sustainable refrigeration[C]//Proceedings of the 12th IIR Gustav Lorentzen Natural Working Fluids Conference. Edinburgh, UK, 2016: 21-24. |
5 | Lorentzen G. Revival of carbon dioxide as a refrigerant[J]. International Journal of Refrigeration, 1994, 17(5): 292-301. |
6 | Sun F T, Ma Y T. Thermodynamic analysis of transcritical CO2 refrigeration cycle with an ejector[J]. Applied Thermal Engineering, 2011, 31(6/7): 1184-1189. |
7 | Li D, Groll E A. Transcritical CO2 refrigeration cycle with ejector-expansion device[J]. International Journal of Refrigeration, 2005, 28(5): 766-773. |
8 | 李亚飞, 邓建强, 何阳. 跨临界CO2快速膨胀过程中非平衡冷凝和闪蒸机理的数值研究[J]. 化工学报, 2022, 73(7): 2912-2923. |
Li Y F, Deng J Q, He Y. Numerical study on non-equilibrium condensation and flash evaporation mechanism during rapid expansion of transcritical CO2 [J]. CIESC Journal, 2022, 73(7): 2912-2923. | |
9 | Smolka J, Bulinski Z, Fic A, et al. A computational model of a transcritical R744 ejector based on a homogeneous real fluid approach[J]. Applied Mathematical Modelling, 2013, 37(3): 1208-1224. |
10 | Lemmon E, Huber M, McLinden M O. NIST standard reference database 23: reference fluid thermodynamic and transport properties-REFPROP, version 8.0[DB]. 2007. |
11 | Fang Y, Poncet S, Nesreddine H, et al. An open-source density-based solver for two-phase CO2 compressible flows: verification and validation[J]. International Journal of Refrigeration, 2019, 106: 526-538. |
12 | Fang Y, de Lorenzo M, Lafon P, et al. An accurate and efficient look-up table equation of state for two-phase compressible flow simulations of carbon dioxide[J]. Industrial & Engineering Chemistry Research, 2018, 57(22): 7676-7691. |
13 | Bilicki Z, Kestin J. Physical aspects of the relaxation model in two-phase flow[J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1990, 428(1875): 379-397. |
14 | Brown S, Martynov S, Mahgerefteh H, et al. A homogeneous relaxation flow model for the full bore rupture of dense phase CO2 pipelines[J]. International Journal of Greenhouse Gas Control, 2013, 17: 349-356. |
15 | Downar-Zapolski P, Bilicki Z, Bolle L, et al. The non-equilibrium relaxation model for one-dimensional flashing liquid flow[J]. International Journal of Multiphase Flow, 1996, 22(3): 473-483. |
16 | Palacz M, Haida M, Smolka J, et al. HEM and HRM accuracy comparison for the simulation of CO2 expansion in two-phase ejectors for supermarket refrigeration systems[J]. Applied Thermal Engineering, 2017, 115: 160-169. |
17 | Varga S, Lebre P M S, Oliveira A C. CFD study of a variable area ratio ejector using R600a and R152a refrigerants[J]. International Journal of Refrigeration, 2013, 36(1): 157-165. |
18 | Yan J, Cai W J. Area ratio effects to the performance of air-cooled ejector refrigeration cycle with R134a refrigerant[J]. Energy Conversion and Management, 2012, 53(1): 240-246. |
19 | Yan J, Cai W J, Li Y Z. Geometry parameters effect for air-cooled ejector cooling systems with R134a refrigerant[J]. Renewable Energy, 2012, 46: 155-163. |
20 | Ma X L, Zhang W, Omer S A, et al. Experimental investigation of a novel steam ejector refrigerator suitable for solar energy applications[J]. Applied Thermal Engineering, 2010, 30(11/12): 1320-1325. |
21 | Lin C, Cai W J, Li Y Z, et al. The characteristics of pressure recovery in an adjustable ejector multi-evaporator refrigeration system[J]. Energy, 2012, 46(1): 148-155. |
22 | Besagni G, Cristiani N. Multi-scale evaluation of an R290 variable geometry ejector[J]. Applied Thermal Engineering, 2021, 188: 116612. |
23 | Bouhanguel A, Desevaux P, Gavignet E. Flow visualization in supersonic ejectors using laser tomography techniques[J]. International Journal of Refrigeration, 2011, 34(7): 1633-1640. |
24 | Elbel S, Hrnjak P. Experimental validation of a prototype ejector designed to reduce throttling losses encountered in transcritical R744 system operation[J]. International Journal of Refrigeration, 2008, 31(3): 411-422. |
25 | Schmidt D P, Gopalakrishnan S, Jasak H. Multi-dimensional simulation of thermal non-equilibrium channel flow[J]. International Journal of Multiphase Flow, 2010, 36(4): 284-292. |
26 | Angielczyk W, Bartosiewicz Y, Butrymowicz D, et al. 1-D modeling of supersonic carbon dioxide two-phase flow through ejector motive nozzle[C]//13th International Refrigeration and Air Conditioning Conference. Purdue, USA: Purdue University, 2010. |
27 | Haida M, Smolka J, Hafner A, et al. Modified homogeneous relaxation model for the R744 trans-critical flow in a two-phase ejector[J]. International Journal of Refrigeration, 2018, 85: 314-333. |
28 | Chen Z, Zhao H X, Kong F C, et al. Synergistic effect of adjustable ejector structure and operating parameters in solar-driven ejector refrigeration system[J]. Solar Energy, 2023, 250: 295-311. |
29 | 马一太. 自然工质二氧化碳制冷与热泵循环原理的研究与进展[M]. 北京: 科学出版社, 2017. |
Ma Y T. Research and Development on Refrigeration and Heat Pump Cycle with Natural Working Fluid Carbon Dioxide[M]. Beijing: Science Press, 2017. | |
30 | Zhu Y H, Jiang P X. Theoretical model of transcritical CO2 ejector with non-equilibrium phase change correlation[J]. International Journal of Refrigeration, 2018, 86: 218-227. |
31 | Liu G D, Wang Z, Zhao H X, et al. R744 ejector simulation based on homogeneous equilibrium model and its application in trans-critical refrigeration system[J]. Applied Thermal Engineering, 2022, 201: 117791. |
32 | Li F L, Li R R, Li X C, et al. Experimental investigation on a R134a ejector refrigeration system under overall modes[J]. Applied Thermal Engineering, 2018, 137: 784-791. |
33 | 金旭, 于跃, 陈作舟, 等. 超音速和亚音速喷嘴对可调式喷射器性能的影响[J]. 化工学报, 2018, 69(4): 1405-1411. |
Jin X, Yu Y, Chen Z Z, et al. Effects of supersonic and subsonic nozzles on performance of adjustable ejectors[J]. CIESC Journal, 2018, 69(4): 1405-1411. | |
34 | Han Y, Wang X D, Sun H, et al. CFD simulation on the boundary layer separation in the steam ejector and its influence on the pumping performance[J]. Energy, 2019, 167: 469-483. |
35 | Liu G D, Zhao H X, Deng J Q, et al. Performance improvement of CO2 two-phase ejector by combining CFD modeling, artificial neural network and genetic algorithm[J]. International Journal of Refrigeration, 2023, 154: 151-167. |
[1] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[2] | 代宝民, 王启龙, 刘圣春, 张佳宁, 李鑫海, 宗凡迪. 非共沸工质辅助过冷CO2冷热联供系统的热力学性能分析[J]. 化工学报, 2023, 74(S1): 64-73. |
[3] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[4] | 周绍华, 詹飞龙, 丁国良, 张浩, 邵艳坡, 刘艳涛, 郜哲明. 短管节流阀内流动噪声的实验研究及降噪措施[J]. 化工学报, 2023, 74(S1): 113-121. |
[5] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[6] | 杨天阳, 邹慧明, 周晖, 王春磊, 田长青. -30℃电动汽车补气式CO2热泵制热性能实验研究[J]. 化工学报, 2023, 74(S1): 272-279. |
[7] | 袁佳琦, 刘政, 黄锐, 张乐福, 贺登辉. 泡状入流条件下旋流泵能量转换特性研究[J]. 化工学报, 2023, 74(9): 3807-3820. |
[8] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[9] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[10] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[11] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[12] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[13] | 岳林静, 廖艺涵, 薛源, 李雪洁, 李玉星, 刘翠伟. 凹坑缺陷对厚孔板喉部空化流动特性影响研究[J]. 化工学报, 2023, 74(8): 3292-3308. |
[14] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[15] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 170
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 254
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||