化工学报 ›› 2023, Vol. 74 ›› Issue (11): 4710-4719.DOI: 10.11949/0438-1157.20230989
收稿日期:
2023-09-21
修回日期:
2023-11-27
出版日期:
2023-11-25
发布日期:
2024-01-22
通讯作者:
郭庆华
作者简介:
段正巧(1997—),男,硕士研究生,Y30211052@mail.ecust.edu.cn
基金资助:
Zhengqiao DUAN(), Yan GONG, Qinghua GUO(
), Guangsuo YU
Received:
2023-09-21
Revised:
2023-11-27
Online:
2023-11-25
Published:
2024-01-22
Contact:
Qinghua GUO
摘要:
基于火焰光谱诊断平台,利用光谱成像系统获得氨/甲烷扩散火焰的OH*、NH2*和NH*辐射分布,并结合CHEMKIN探究其反应机理。结果表明:与纯甲烷燃烧相比,氨掺混后火焰的OH*辐射分布区域和辐射强度均降低较明显,在火焰下游分布形态向外延展。随着氨掺混比例的增加,NH2*辐射分布区域向火焰下游拉升,辐射强度增加。NH*辐射分布区域基本不变,辐射强度随氨掺混比例的增加先增加后降低,在氨分数为0.2~0.3时达到最大。三个自由基辐射强度均随当量比增大而增加,其中OH*分布偏向氧化剂侧,NH2*和NH*偏向燃料侧。添加NH2*和NH*反应机理后,模拟结果显示,NH2*的主要来源为氨的脱氢过程,掺氨比例的变化直接影响NH2*的生成,NH*最大生成反应的反应生成率受氨和甲烷混合比例的影响。
中图分类号:
段正巧, 龚岩, 郭庆华, 于广锁. 氨/甲烷扩散火焰中OH*、NH2*和NH*光谱辐射特性研究[J]. 化工学报, 2023, 74(11): 4710-4719.
Zhengqiao DUAN, Yan GONG, Qinghua GUO, Guangsuo YU. Spectral radiation characterization of OH*, NH2* and NH* in ammonia/methane diffusion flame[J]. CIESC Journal, 2023, 74(11): 4710-4719.
序号 | CH4/(L·min-1) | NH3/(L·min-1) | O2/(L·min-1) | φ | |
---|---|---|---|---|---|
1 | 0.30 | 0 | 0 | 0.60 | 1.0 |
2 | 0.27 | 0.03 | 0.1 | 0.34~0.84 | 0.6~1.5 |
3 | 0.24 | 0.06 | 0.2 | 0.32~0.79 | 0.6~1.5 |
4 | 0.21 | 0.09 | 0.3 | 0.29~0.73 | 0.6~1.5 |
5 | 0.18 | 0.12 | 0.4 | 0.27~0.68 | 0.6~1.5 |
6 | 0.15 | 0.15 | 0.5 | 0.25~0.62 | 0.6~1.5 |
表1 实验工况
Table 1 Experimental conditions
序号 | CH4/(L·min-1) | NH3/(L·min-1) | O2/(L·min-1) | φ | |
---|---|---|---|---|---|
1 | 0.30 | 0 | 0 | 0.60 | 1.0 |
2 | 0.27 | 0.03 | 0.1 | 0.34~0.84 | 0.6~1.5 |
3 | 0.24 | 0.06 | 0.2 | 0.32~0.79 | 0.6~1.5 |
4 | 0.21 | 0.09 | 0.3 | 0.29~0.73 | 0.6~1.5 |
5 | 0.18 | 0.12 | 0.4 | 0.27~0.68 | 0.6~1.5 |
6 | 0.15 | 0.15 | 0.5 | 0.25~0.62 | 0.6~1.5 |
序号 | NH2* | 序号 | NH* |
---|---|---|---|
R1 | NH2* | R11 | NH* |
R2 | NH2*+M | R12 | NH*+NH3 |
R3 | NH+H+M N2/1.0/NH3/2.5/AR/0.38/HE/0.36/CH4/0.76/CO/1.16/H2/1.14/ | R13 | NH*+M O2/1.0/NH3/0.0/H2O/5.3/C2H6/4.2/CH4/2.3/CO/2.2/H2/1.5/N2/0.02/ |
R4 | NH2*+H2 | R14 | NH*+H2O |
R5 | NH*+H2 | R15 | NH*+H2 |
R6 | NH2*+H2O | R16 | NH*+NH3 |
R7 | N2+NH2*+H | R17 | NH*+H |
R8 | NH2+N2(A) | R18 | N2(A)+NH |
R9 | N2H4+H | R19 | CH+NO |
R10 | N2H4+H |
表2 NH2*、NH*基元反应
Table 2 NH2*, NH* radical reactions
序号 | NH2* | 序号 | NH* |
---|---|---|---|
R1 | NH2* | R11 | NH* |
R2 | NH2*+M | R12 | NH*+NH3 |
R3 | NH+H+M N2/1.0/NH3/2.5/AR/0.38/HE/0.36/CH4/0.76/CO/1.16/H2/1.14/ | R13 | NH*+M O2/1.0/NH3/0.0/H2O/5.3/C2H6/4.2/CH4/2.3/CO/2.2/H2/1.5/N2/0.02/ |
R4 | NH2*+H2 | R14 | NH*+H2O |
R5 | NH*+H2 | R15 | NH*+H2 |
R6 | NH2*+H2O | R16 | NH*+NH3 |
R7 | N2+NH2*+H | R17 | NH*+H |
R8 | NH2+N2(A) | R18 | N2(A)+NH |
R9 | N2H4+H | R19 | CH+NO |
R10 | N2H4+H |
1 | Valera-Medina A, Xiao H, Owen-Jones M, et al. Ammonia for power[J]. Progress in Energy and Combustion Science, 2018, 69: 63-102. |
2 | Kobayashi H, Hayakawa A, Somarathne K D K A, et al. Science and technology of ammonia combustion[J]. Proceedings of the Combustion Institute, 2019, 37(1): 109-133. |
3 | Reiter A J, Kong S C. Combustion and emissions characteristics of compression-ignition engine using dual ammonia-diesel fuel[J]. Fuel, 2011, 90(1): 87-97. |
4 | Han X L, Wang Z H, Costa M, et al. Experimental and kinetic modeling study of laminar burning velocities of NH3/air, NH3/H2/air, NH3/CO/air and NH3/CH4/air premixed flames[J]. Combustion and Flame, 2019, 206: 214-226. |
5 | 周上坤, 杨文俊, 谭厚章, 等. 氨燃烧研究进展[J]. 中国电机工程学报, 2021, 41(12): 4164-4182. |
Zhou S K, Yang W J, Tan H Z, et al. Research progress of ammonia combustion[J]. Proceedings of the CSEE, 2021, 41(12): 4164-4182. | |
6 | Ballester J, García-Armingol T. Diagnostic techniques for the monitoring and control of practical flames[J]. Progress in Energy and Combustion Science, 2010, 36(4): 375-411. |
7 | 周莹, 白永辉, 宋旭东, 等. 自由基的化学发光特性在火焰光谱诊断的应用综述[J]. 光谱学与光谱分析, 2020, 40(11): 3358-3364. |
Zhou Y, Bai Y H, Song X D, et al. Application of chemiluminescence in spectral diagnosis: a review[J]. Spectroscopy and Spectral Analysis, 2020, 40(11): 3358-3364. | |
8 | 闫帅, 杨家宝, 龚岩, 等. CO2稀释对甲烷反扩散火焰结构的影响研究[J]. 化工学报, 2022, 73(3): 1335-1342. |
Yan S, Yang J B, Gong Y, et al. Effects of CO2 dilution on the structure of methane inverse diffusion flame[J]. CIESC Journal, 2022, 73(3): 1335-1342. | |
9 | Baumgardner M E, Harvey J. Analyzing OH*, CH*, and C2* chemiluminescence of bifurcating FREI propane-air flames in a micro flow reactor[J]. Combustion and Flame, 2020, 221: 349-351. |
10 | Hardalupas Y, Panoutsos C S, Taylor A M K P. Spatial resolution of a chemiluminescence sensor for local heat-release rate and equivalence ratio measurements in a model gas turbine combustor[J]. Experiments in Fluids, 2010, 49(4): 883-909. |
11 | Bedard M J, Fuller T L, Sardeshmukh S, et al. Chemiluminescence as a diagnostic in studying combustion instability in a practical combustor[J]. Combustion and Flame, 2020, 213: 211-225. |
12 | Li Z S, Li B, Sun Z W, et al. Turbulence and combustion interaction: high resolution local flame front structure visualization using simultaneous single-shot PLIF imaging of CH, OH, and CH2O in a piloted premixed jet flame[J]. Combustion and Flame, 2010, 157(6): 1087-1096. |
13 | Walsh K T, Fielding J, Smooke M D, et al. A comparison of computational and experimental lift-off heights of coflow laminar diffusion flames[J]. Proceedings of the Combustion Institute, 2005, 30(1): 357-365. |
14 | Wang Z Y, Sunderland P B, Axelbaum R L. Double blue zones in inverse and normal laminar jet diffusion flames[J]. Combustion and Flame, 2020, 211: 253-259. |
15 | Zhu X R, Khateeb A A, Roberts W L, et al. Chemiluminescence signature of premixed ammonia-methane-air flames[J]. Combustion and Flame, 2021, 231: 111508. |
16 | Vigueras-Zúñiga M O, Tejeda-del-Cueto M E, Mashruk S, et al. Methane/ammonia radical formation during high temperature reactions in swirl burners[J]. Energies, 2021, 14(20):6624. |
17 | Pugh D, Runyon J, Bowen P, et al. An investigation of ammonia primary flame combustor concepts for emissions reduction with OH*, NH2* and NH* chemiluminescence at elevated conditions[J]. Proceedings of the Combustion Institute, 2021, 38(4): 6451-6459. |
18 | Choe J, Sun W T. Experimental investigation of non-equilibrium plasma-assisted ammonia flames using NH2* chemiluminescence and OH planar laser-induced fluorescence[J]. Proceedings of the Combustion Institute, 2023, 39(4): 5439-5446. |
19 | Zhu X R, Khateeb A A, Guiberti T F, et al. NO and OH* emission characteristics of very-lean to stoichiometric ammonia-hydrogen-air swirl flames[J]. Proceedings of the Combustion Institute, 2021, 38(4): 5155-5162. |
20 | Miao J, Leung C W, Cheung C S, et al. Effect of H2 addition on OH distribution of LPG/air circumferential inverse diffusion flame[J]. International Journal of Hydrogen Energy, 2016, 41(22): 9653-9663. |
21 | Ren F, Cheng X G, Gao Z, et al. Effects of NH3 addition on polycyclic aromatic hydrocarbon and soot formation in C2H4 co-flow diffusion flames[J]. Combustion and Flame, 2022, 241: 111958. |
22 | 毛晨林, 王平, Prashant Shrotriya, 等. 含氨燃料预混火焰的层流火焰速度及NO排放特性[J]. 化工学报, 2021, 72(10): 5330-5343. |
Mao C L, Wang P, Shrotriya P, et al. Laminar flame speed and NO emission characteristics of premixed flames with different ammonia-containing fuels[J]. CIESC Journal, 2021, 72(10): 5330-5343. | |
23 | Li N N, Deng H X, Xu Z Z, et al. Experimental study on NH3/H2/air, NH3/CO/air, NH3/H2/CO/air premix combustion in a closed pipe and dynamic simulation at high temperature and pressure[J]. International Journal of Hydrogen Energy, 2023, 48(88): 34551-34564. |
24 | Chen G Y, Zuo S S, Zhang J S, et al. Experimental and numerical simulation of effects of CO2/N2 concentration and initial temperature on combustion characteristics of biomass syngas[J]. Journal of Saudi Chemical Society, 2022, 26(4): 101490. |
25 | Mashruk S, Zitouni S E, Brequigny P, et al. Combustion performances of premixed ammonia/hydrogen/air laminar and swirling flames for a wide range of equivalence ratios[J]. International Journal of Hydrogen Energy, 2022, 47(97): 41170-41182. |
26 | Mashruk S, Zhu X R, Roberts W L, et al. Chemiluminescent footprint of premixed ammonia-methane-air swirling flames[J]. Proceedings of the Combustion Institute, 2023, 39(1): 1415-1423. |
27 | Guo Y, Shi H, Liu H, et al. Reactive molecular dynamics simulation and chemical kinetic modeling of ammonia/methane co-combustion[J]. Fuel, 2023, 354: 129341. |
28 | Füzesi D, Wang S Q, Józsa V, et al. Ammonia-methane combustion in a swirl burner: experimental analysis and numerical modeling with flamelet generated manifold model[J]. Fuel, 2023, 341: 127403. |
29 | Lesmana H, Zhu M M, Zhang Z Z, et al. Experimental and kinetic modelling studies of laminar flame speed in mixtures of partially dissociated NH3 in air[J]. Fuel, 2020, 278: 118428. |
30 | Chen J D, Lubrano Lavadera M, Konnov A A. An experimental and modeling study on the laminar burning velocities of ammonia + oxygen + argon mixtures[J]. Combustion and Flame, 2023, 255: 112930. |
31 | Okafor E C, Naito Y, Colson S, et al. Experimental and numerical study of the laminar burning velocity of CH4-NH3-air premixed flames[J]. Combustion and Flame, 2018, 187: 185-198. |
32 | Konnov A A. An exploratory modelling study of chemiluminescence in ammonia-fuelled flames (Part 1)[J]. Combustion and Flame, 2023, 253: 112788. |
33 | Konnov A A. An exploratory modelling study of chemiluminescence in ammonia-fuelled flames (Part 2)[J]. Combustion and Flame, 2023, 253: 112789. |
34 | 田鑫明, 杨家宝, 郭庆华, 等. 基于OH*化学发光特性的CH4/O2扩散火焰燃料稀释效应研究[J]. 燃烧科学与技术, 2022, 28(3): 254-260. |
Tian X M, Yang J B, Guo Q H, et al. Fuel dilution effect based on OH* chemiluminescence in CH4/O2 diffusion flame[J]. Journal of Combustion Science and Technology, 2022, 28(3): 254-260. | |
35 | Yan S, Gong Y, Yang J B, et al. The effect of reaction mechanism on OH* chemiluminescence in methane inverse diffusion flame[J]. Fuel, 2023, 332: 126085. |
[1] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[2] | 何晓崐, 刘锐, 薛园, 左然. MOCVD生长AlN单晶薄膜的气相和表面化学反应综述[J]. 化工学报, 2023, 74(7): 2800-2813. |
[3] | 刘晓洋, 喻健良, 侯玉洁, 闫兴清, 张振华, 吕先舒. 螺旋微通道对掺氢甲烷爆轰传播的影响[J]. 化工学报, 2023, 74(7): 3139-3148. |
[4] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[5] | 牛超, 沈胜强, 杨艳, 潘泊年, 李熠桥. 甲烷BOG喷射器流动过程计算与性能分析[J]. 化工学报, 2023, 74(7): 2858-2868. |
[6] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
[7] | 周小文, 杜杰, 张战国, 许光文. 基于甲烷脉冲法的Fe2O3-Al2O3载氧体还原特性研究[J]. 化工学报, 2023, 74(6): 2611-2623. |
[8] | 周继鹏, 何文军, 李涛. 异形催化剂上乙烯催化氧化失活动力学反应工程计算[J]. 化工学报, 2023, 74(6): 2416-2426. |
[9] | 李辰鑫, 潘艳秋, 何流, 牛亚宾, 俞路. 基于碳微晶结构的炭膜模型及其气体分离模拟[J]. 化工学报, 2023, 74(5): 2057-2066. |
[10] | 张兰河, 赖青燚, 王铁铮, 关潇卓, 张明爽, 程欣, 徐小惠, 贾艳萍. H2O2对SBR脱氮效率和污泥性能的影响[J]. 化工学报, 2023, 74(5): 2186-2196. |
[11] | 李瑞康, 何盈盈, 卢维鹏, 王园园, 丁皓东, 骆勇名. 电化学强化钴基阴极活化过一硫酸盐的研究[J]. 化工学报, 2023, 74(5): 2207-2216. |
[12] | 衣思敏, 马亚丽, 刘伟强, 张金帅, 岳岩, 郑强, 贾松岩, 李雪. 微晶菱镁矿蒸氨及水化动力学研究[J]. 化工学报, 2023, 74(4): 1578-1586. |
[13] | 胡香凝, 尹渊博, 袁辰, 是赟, 刘翠伟, 胡其会, 杨文, 李玉星. 成品油在土壤中运移可视化的实验研究[J]. 化工学报, 2023, 74(4): 1827-1835. |
[14] | 王帅, 杨富凯, 徐新宇. 阻燃型全生物基多元醇聚氨酯泡沫的制备及性能研究[J]. 化工学报, 2023, 74(3): 1399-1408. |
[15] | 胡晗, 杨亮, 李春晓, 刘道平. 天然烟浸滤液水合物法储甲烷动力学研究[J]. 化工学报, 2023, 74(3): 1313-1321. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 198
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 248
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||