化工学报 ›› 2024, Vol. 75 ›› Issue (3): 974-986.DOI: 10.11949/0438-1157.20231344
谭耀文1,2(), 姜攀星1,2, 杜青1,2, 余婉秋1,2, 温小飞3, 詹志刚1,2(
)
收稿日期:
2023-12-18
修回日期:
2024-01-15
出版日期:
2024-03-25
发布日期:
2024-05-11
通讯作者:
詹志刚
作者简介:
谭耀文(1998—),男,硕士研究生,18271236764@163.com
基金资助:
Yaowen TAN1,2(), Panxing JIANG1,2, Qing DU1,2, Wanqiu YU1,2, Xiaofei WEN3, Zhigang ZHAN1,2(
)
Received:
2023-12-18
Revised:
2024-01-15
Online:
2024-03-25
Published:
2024-05-11
Contact:
Zhigang ZHAN
摘要:
为研究长期稳定运行条件下,工作电压对质子交换膜燃料电池膜电极衰退状况的影响,建立了包含碳腐蚀、Pt氧化与溶解以及离聚物降解的PEMFC多物理场耦合模型进行数值模拟。研究结果表明:随着工作电压增加,阴极催化层中Pt溶解与碳腐蚀速率加快,500 h后Pt表面氧化的区域大幅增加,阴极催化层中团聚体半径与质子交换膜中磺酸基团浓度剧烈减小,衰退区域主要集中在阴极入口处且高电压下衰退程度急剧增加。电池在0.8 V下运行500 h后,阴极入口处阴极催化层与膜厚度显著减小,分别降低13.62%与35.30%;阴极催化层电化学活性面积和膜的离子电导率分别减小59.9%与6.9%,膜的当量质量增加7.4%,且上述指标前100 h内衰退剧烈,随后逐渐趋于平缓。可为膜电极材料设计与控制策略的优化提供参考。
中图分类号:
谭耀文, 姜攀星, 杜青, 余婉秋, 温小飞, 詹志刚. 工作电压对PEMFC膜电极衰退影响模拟研究[J]. 化工学报, 2024, 75(3): 974-986.
Yaowen TAN, Panxing JIANG, Qing DU, Wanqiu YU, Xiaofei WEN, Zhigang ZHAN. Numerical study of the effects of operating voltage on the degradation of membrane electrodes of PEMFC[J]. CIESC Journal, 2024, 75(3): 974-986.
参数 | 数值/ |
---|---|
电池总长/宽/高 | 60/2/2.407 |
流道深度 | 0.5 |
流道宽度 | 0.8 |
岸宽 | 0.6 |
阴/阳极GDL厚度 | 0.16 |
阴/阳极MPL厚度 | 0.03 |
阴/阳极CL厚度 | 0.009/0.006 |
质子交换膜厚度 | 0.012 |
表1 结构参数
Table 1 Structural parameters
参数 | 数值/ |
---|---|
电池总长/宽/高 | 60/2/2.407 |
流道深度 | 0.5 |
流道宽度 | 0.8 |
岸宽 | 0.6 |
阴/阳极GDL厚度 | 0.16 |
阴/阳极MPL厚度 | 0.03 |
阴/阳极CL厚度 | 0.009/0.006 |
质子交换膜厚度 | 0.012 |
参数 | 数值 |
---|---|
温度/K | 348.15 |
阴/阳极出口背压/kPa | 150/150 |
阴/阳极进口加湿度/% | 70/50 |
阴/阳极化学计量比 | 2/2 |
表2 操作条件
Table 2 Operating conditions
参数 | 数值 |
---|---|
温度/K | 348.15 |
阴/阳极出口背压/kPa | 150/150 |
阴/阳极进口加湿度/% | 70/50 |
阴/阳极化学计量比 | 2/2 |
参数 | 数值 |
---|---|
GDL/MPL/CL接触角/(°) | 130/140/120 |
GDL/MPL/CL孔隙率 | 0.7/0.6/0.5 |
GDL/MPL/CL/PEM密度/(kg/m3) | 2000/2000/1350/1980 |
GDL/MPL/CL/PEM比热容/(J/(kg·K)) | 1000/1000/680/1090 |
GDL/MPL/CL渗透率(厚度方向)/m2 | 6.5×10-12/3.4×10-12/2×10-15 |
GDL/MPL/CL渗透率(平面方向)/m2 | 1.9×10-12/3.4×10-12/2×10-15 |
GDL/MPL/CL/PEM电导率(厚度方向)/(S/m) | 358/358/13514/0 |
GDL/MPL/CL/PEM电导率(平面方向)/(S/m) | 27500/358/13514/0 |
GDL/MPL/CL/PEM热导率(厚度方向)/ (W/(m·K)) | 0.83/0.83/2.74/0.2 |
GDL/MPL/CL/PEM热导率(平面方向)/ (W/(m·K)) | 8.33/0.83/2.74/0.2 |
阴/阳极交换电流密度/(A/m3) | 900/5×108 |
阴/阳极电荷传递系数 | 0.65/0.5 |
表3 物性参数[30]及电化学参数[20]
Table 3 Physical parameters[30] and electrochemical parameters[20]
参数 | 数值 |
---|---|
GDL/MPL/CL接触角/(°) | 130/140/120 |
GDL/MPL/CL孔隙率 | 0.7/0.6/0.5 |
GDL/MPL/CL/PEM密度/(kg/m3) | 2000/2000/1350/1980 |
GDL/MPL/CL/PEM比热容/(J/(kg·K)) | 1000/1000/680/1090 |
GDL/MPL/CL渗透率(厚度方向)/m2 | 6.5×10-12/3.4×10-12/2×10-15 |
GDL/MPL/CL渗透率(平面方向)/m2 | 1.9×10-12/3.4×10-12/2×10-15 |
GDL/MPL/CL/PEM电导率(厚度方向)/(S/m) | 358/358/13514/0 |
GDL/MPL/CL/PEM电导率(平面方向)/(S/m) | 27500/358/13514/0 |
GDL/MPL/CL/PEM热导率(厚度方向)/ (W/(m·K)) | 0.83/0.83/2.74/0.2 |
GDL/MPL/CL/PEM热导率(平面方向)/ (W/(m·K)) | 8.33/0.83/2.74/0.2 |
阴/阳极交换电流密度/(A/m3) | 900/5×108 |
阴/阳极电荷传递系数 | 0.65/0.5 |
工况 | 网格数量/个 | 电流密度/(mA/cm2) | 电压/V | 计算时间/h |
---|---|---|---|---|
Case1 | 196964 | 800 | 0.731275 | 5.1 |
Case2 | 261492 | 800 | 0.731949 | 7.3 |
Case3 | 307831 | 800 | 0.732615 | 8.6 |
Case4 | 363158 | 800 | 0.732826 | 10.4 |
Case5 | 431285 | 800 | 0.732910 | 12.8 |
表4 网格独立性检验
Table 4 Grid independence test
工况 | 网格数量/个 | 电流密度/(mA/cm2) | 电压/V | 计算时间/h |
---|---|---|---|---|
Case1 | 196964 | 800 | 0.731275 | 5.1 |
Case2 | 261492 | 800 | 0.731949 | 7.3 |
Case3 | 307831 | 800 | 0.732615 | 8.6 |
Case4 | 363158 | 800 | 0.732826 | 10.4 |
Case5 | 431285 | 800 | 0.732910 | 12.8 |
图8 运行500 h后阴极催化层中团聚体的半径和阴极催化层厚度的减少率
Fig.8 The reduction rate of the radius of agglomerate in CLL and the thickness reduction of the catalytic layer after 500 h of running
1 | Meyer Q, Zeng Y C, Zhao C. In situ and operando characterization of proton exchange membrane fuel cells[J]. Advanced Materials, 2019, 31(40): e1901900. |
2 | 侯明, 邵志刚, 俞红梅, 等. 2019年氢燃料电池研发热点回眸[J]. 科技导报, 2020, 38(1): 137-150. |
Hou M, Shao Z G, Yu H M, et al. Review of hot topics on hydrogen fuel cell in 2019[J]. Science & Technology Review, 2020, 38(1): 137-150. | |
3 | Nguyen H L, Han J, Nguyen X L, et al. Review of the durability of polymer electrolyte membrane fuel cell in long-term operation: main influencing parameters and testing protocols[J]. Energies, 2021, 14(13): 4048. |
4 | Okonkwo P C, Ige O O, Barhoumi E M, et al. Platinum degradation mechanisms in proton exchange membrane fuel cell (PEMFC) system: a review[J]. International Journal of Hydrogen Energy, 2021, 46(29): 15850-15865. |
5 | Gittleman C S, Coms F, Lai Y. Membrane durability: physical and chemical degradation[M]// Modern Topics in Polymer Electrolyte Full Cell. Boston: Elsevier Inc., 2011: 15-88. |
6 | Hong K, Li S, Zhu K, et al. Effects of relative humidification on durability of membrane electrode assembly of proton exchange membrane fuel cells[J]. Journal of the Electrochemical Society, 2021, 168(6): 064507. |
7 | Chen H C, Zhao X, Zhang T, et al. The reactant starvation of the proton exchange membrane fuel cells for vehicular applications: a review[J]. Energy Conversion & Management, 2019, 182: 282-298. |
8 | 王诚, 王树博, 张剑波, 等. 车用燃料电池耐久性研究[J]. 化学进展, 2015, 27(4): 424-435. |
Wang C, Wang S B, Zhang J B, et al. The durability research on the proton exchange membrane fuel cell for automobile application[J]. Progress in Chemistry, 2015, 27(4): 424-435. | |
9 | Ren P, Pei P C, Li Y H, et al. Degradation mechanisms of proton exchange membrane fuel cell under typical automotive operating conditions[J]. Progress in Energy and Combustion Science, 2020, 80: 100859. |
10 | Zhang Y L, Chen S G, Wang Y, et al. Study of the degradation mechanisms of carbon-supported platinum fuel cells catalyst via different accelerated stress test[J]. Journal of Power Sources, 2015, 273: 62-69. |
11 | Han M, Shul Y G, Lee H, et al. Accelerated testing of polymer electrolyte membranes under open-circuit voltage conditions for durable proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2017, 42(52): 30787-30791. |
12 | Franck-Lacaze L, Bonnet C, Choi E, et al. Ageing of PEMFC’s due to operation at low current density: investigation of oxidative degradation[J]. International Journal of Hydrogen Energy, 2010, 35(19): 10472-10481. |
13 | Kneer A, Wagner N, Sadeler C, et al. Effect of dwell time and scan rate during voltage cycling on catalyst degradation in PEM fuel cells[J]. Journal of the Electrochemical Society, 2018, 165(10): F805-F812. |
14 | Kneer A, Wagner N. A semi-empirical catalyst degradation model based on voltage cycling under automotive operating conditions in PEM fuel cells[J]. Journal of the Electrochemical Society, 2019, 166(2): F120-F127. |
15 | 罗马吉, 杨俊玮, 赵岩, 等. 不同衰退机理对PEMFC怠速工况性能衰退影响的模拟研究[J]. 太阳能学报, 2021, 42(3): 414-421. |
Luo M J, Yang J W, Zhao Y, et al. Simulation study on effect of different aging mechanisms on PEMFC performance degradation under idling condition[J]. Acta Energiae Solaris Sinica, 2021, 42(3): 414-421. | |
16 | Kundu S, Fowler M W, Simon L C, et al. Degradation analysis and modeling of reinforced catalyst coated membranes operated under OCV conditions[J]. Journal of Power Sources, 2008, 183(2): 619-628. |
17 | Moein-Jahromi M, Kermani M J. Three-dimensional multiphase simulation and multi-objective optimization of PEM fuel cells degradation under automotive cyclic loads[J]. Energy Conversion and Management, 2021, 231: 113837. |
18 | Cullen D A, Neyerlin K C, Ahluwalia R K, et al. New roads and challenges for fuel cells in heavy-duty transportation[J]. Nature Energy, 2021, 6: 462-474. |
19 | Shao Y Y, Yin G P, Gao Y Z. Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell[J]. Journal of Power Sources, 2007, 171(2): 558-566. |
20 | Fink C, Karpenko-Jereb L, Ashton S. Advanced CFD analysis of an air-cooled PEM fuel cell stack predicting the loss of performance with time[J]. Fuel Cells, 2016, 16(4): 490-503. |
21 | Pandy A, Yang Z W, Gummalla M, et al. A carbon corrosion model to evaluate the effect of steady state and transient operation of a polymer electrolyte membrane fuel cell[J]. Journal of the Electrochemical Society, 2013, 160(9): F972-F979. |
22 | MacAuley N, Papadias D D, Fairweather J, et al. Carbon corrosion in PEM fuel cells and the development of accelerated stress tests[J]. Journal of the Electrochemical Society, 2018, 165(6): F3148-F3160. |
23 | Bi W, Fuller T F. Modeling of PEM fuel cell Pt/C catalyst degradation[J]. Journal of Power Sources, 2008, 178(1): 188-196. |
24 | Heyd D V, Harrington D A. Platinum oxide growth kinetics for cyclic voltammetry[J]. Journal of Electroanalytical Chemistry, 1992, 335(1/2): 19-31. |
25 | Darling R M, Meyers J P. Mathematical model of platinum movement in PEM fuel cells[J]. Journal of the Electrochemical Society, 2005, 152(1): A242. |
26 | Kregar A, Tavčar G, Kravos A, et al. Predictive system-level modeling framework for transient operation and cathode platinum degradation of high temperature proton exchange membrane fuel cells[J]. Applied Energy, 2020, 263: 114547. |
27 | Wong K H, Kjeang E. Mitigation of chemical membrane degradation in fuel cells: understanding the effect of cell voltage and iron ion redox cycle[J]. ChemSusChem, 2015, 8(6): 1072-1082. |
28 | Wong K H, Kjeang E. Macroscopic in-situ modeling of chemical membrane degradation in polymer electrolyte fuel cells[J]. Journal of the Electrochemical Society, 2014, 161(9): F823-F832. |
29 | Singh R, Sui P C, Wong K H, et al. Modeling the effect of chemical membrane degradation on PEMFC performance[J]. Journal of the Electrochemical Society, 2018, 165(6): F3328-F3336. |
30 | Fink C, Gößling S, Karpenko-Jereb L, et al. CFD simulation of an industrial PEM fuel cell with local degradation effects[J]. Fuel Cells, 2020, 20(4): 431-452. |
31 | Chen H, Zhan Z G, Jiang P X, et al. Whole life cycle performance degradation test and RUL prediction research of fuel cell MEA[J]. Applied Energy, 2022, 310: 118556. |
[1] | 曾玉娇, 肖炘, 杨刚, 张意博, 郑光明, 李防, 汪凤玲. 基于机理与数据混合驱动的湿法磷酸生产过程代理建模与优化[J]. 化工学报, 2024, 75(3): 936-944. |
[2] | 张领先, 刘斌, 邓琳, 任宇航. 基于改进TSO优化Xception的PEMFC故障诊断[J]. 化工学报, 2024, 75(3): 945-955. |
[3] | 成文凯, 颜金钰, 王嘉骏, 冯连芳. 卧式捏合反应器及其在聚合工业中的研究进展[J]. 化工学报, 2024, 75(3): 768-781. |
[4] | 谷世良, 谭博仁, 程全中, 姚玮洁, 董志鹏, 许峰, 王勇. 轴流泵式混合室内水力学特征的数值模拟[J]. 化工学报, 2024, 75(3): 815-822. |
[5] | 徐百平, 梁瑞凤, 喻慧文, 吴桂群, 肖书平. 双螺杆挤出机强化三角形转子作用下的腔内分布混合模拟[J]. 化工学报, 2024, 75(3): 858-866. |
[6] | 屠楠, 刘晓群, 王驰宇, 方嘉宾. 连续进出料鼓泡流化床停留时间分布的相似准则研究[J]. 化工学报, 2024, 75(2): 543-552. |
[7] | 李文俊, 赵中阳, 倪震, 周灿, 郑成航, 高翔. 基于气-液传质强化的湿法烟气脱硫CFD模拟研究[J]. 化工学报, 2024, 75(2): 505-519. |
[8] | 刘克清, 崔燕, 于琼, 陈立坤, 郑永超, 乔智威, 郑禾. 氨基酸修饰的MOF-808催化降解神经毒剂的模拟酶性质研究[J]. 化工学报, 2024, 75(2): 616-625. |
[9] | 詹小斌, 王会彬, 蒋亚龙, 史铁林. 声共振混合器高黏度流体混合的功耗特性研究[J]. 化工学报, 2024, 75(2): 531-542. |
[10] | 韩东, 高宁宁, 唐新德, 龚升高, 夏良树. 适用欧拉-拉格朗日方法模拟气液泡状流的气泡破碎模型[J]. 化工学报, 2024, 75(2): 553-565. |
[11] | 王学云, 郁肖兵, 彭万旺, 沈岩松. 熔渣气化炉喷嘴燃烧区行为的数值模拟研究[J]. 化工学报, 2024, 75(2): 659-674. |
[12] | 陈宏, 江坤, 唐廷江, 黄易元, 池滨, 廖世军. 大功率质子交换膜燃料电池电堆膜电极一致性研究[J]. 化工学报, 2024, 75(2): 637-646. |
[13] | 吴凡, 彭旭东, 江锦波, 孟祥铠, 梁杨杨. 分子动力学模拟预测天然气密度和黏度的可行性研究[J]. 化工学报, 2024, 75(2): 450-462. |
[14] | 赵碧丹, 代伊杨, 王军武, 张永民. CFD-DEM-IBM方法探究流化床倾斜挡板内构件受力特性[J]. 化工学报, 2024, 75(1): 255-267. |
[15] | 崔怡洲, 李成祥, 翟霖晓, 刘束玉, 石孝刚, 高金森, 蓝兴英. 亚毫米气泡和常规尺寸气泡气液两相流流动与传质特性对比[J]. 化工学报, 2024, 75(1): 197-210. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 108
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 180
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||