化工学报 ›› 2024, Vol. 75 ›› Issue (2): 553-565.DOI: 10.11949/0438-1157.20231145
韩东1(), 高宁宁2, 唐新德2, 龚升高2(), 夏良树1()
收稿日期:
2023-11-07
修回日期:
2024-01-04
出版日期:
2024-02-25
发布日期:
2024-04-10
通讯作者:
龚升高,夏良树
作者简介:
韩东(1999—),男,硕士研究生,15524910618@163.com
基金资助:
Dong HAN1(), Ningning GAO2, Xinde TANG2, Shenggao GONG2(), Liangshu XIA1()
Received:
2023-11-07
Revised:
2024-01-04
Online:
2024-02-25
Published:
2024-04-10
Contact:
Shenggao GONG, Liangshu XIA
摘要:
欧拉-拉格朗日方法已被广泛应用于模拟鼓泡塔等气-液反应器内的流型、气泡尺寸(或气含率)及其分布。文献中该方法主要基于临界Weber数观点来描述气泡破碎行为,且破碎后的子气泡尺寸由随机数确定。但现有实验和理论研究表明,临界Weber数约束不能体现气体密度等物性参数和泡内气体重分布对气泡破碎行为的影响。针对这些不足,提出了适用欧拉-拉格朗日框架且考虑泡内气体重分布贡献的气泡破碎机理模型,并利用开源软件OpenFOAM开发了基于新破碎模型的求解器。新模型预测结果能较好地吻合实验测量的时均轴向液速、气泡尺寸及其分布等实验数据。特别地,考虑泡内气体重分布现象的破碎机理模型成功预测了实验观测的气泡尺寸双峰分布特征。
中图分类号:
韩东, 高宁宁, 唐新德, 龚升高, 夏良树. 适用欧拉-拉格朗日方法模拟气液泡状流的气泡破碎模型[J]. 化工学报, 2024, 75(2): 553-565.
Dong HAN, Ningning GAO, Xinde TANG, Shenggao GONG, Liangshu XIA. Model development for simulating bubble breakup in gas-liquid bubbly flows with the Eulerian-Lagrangian approach[J]. CIESC Journal, 2024, 75(2): 553-565.
图10 0.015m/s表观气速下气体密度对鼓泡塔顶部区域内气泡尺寸分布的影响
Fig.10 Effect of gas density on the bubble size distribution in the top region of bubble column with ug = 0.015 m/s
1 | Shi W B, Yang J, Li G, et al. Modelling of breakage rate and bubble size distribution in bubble columns accounting for bubble shape variations[J]. Chemical Engineering Science, 2018, 187: 391-405. |
2 | 曹俊雅, 张绅, 张涛, 等. 上流式反应器气液相间传质特性的实验研究[J]. 化工学报, 2019, 70(10): 3914-3923. |
Cao J Y, Zhang S, Zhang T, et al. Experimental study of gas-liquid mass transfer characteristics in up-flow reactor[J]. CIESC Journal, 2019, 70(10): 3914-3923. | |
3 | Krishna R, Sie S T. Design and scale-up of the Fischer-Tropsch bubble column slurry reactor[J]. Fuel Processing Technology, 2000, 64(1/2/3): 73-105. |
4 | Sen N, Singh K K, Patwardhan A W, et al. CFD-PBM simulations of a pulsed sieve plate column[J]. Progress in Nuclear Energy, 2019, 111: 125-137. |
5 | 万景, 张霖, 樊亚超, 等. 基于介尺度PBM模型的生物反应器放大模拟及实验研究[J]. 化工学报, 2022, 73(6): 2698-2707. |
Wan J, Zhang L, Fan Y C, et al. Bioreactor scale-up simulation and experimental study based on mesoscale PBM model[J]. CIESC Journal, 2022, 73(6): 2698-2707. | |
6 | Xie L, Liu Q, Luo Z H. A multiscale CFD-PBM coupled model for the kinetics and liquid-liquid dispersion behavior in a suspension polymerization stirred tank[J]. Chemical Engineering Research and Design, 2018, 130: 1-17. |
7 | 袁佳琦, 刘政, 黄锐, 等. 泡状入流条件下旋流泵能量转换特性研究[J]. 化工学报, 2023, 74(9): 3807-3820. |
Yuan J Q, Liu Z, Huang R, et al. Investigation on energy conversion characteristics of vortex pump under bubble inflow[J]. CIESC Journal, 2023, 74(9): 3807-3820. | |
8 | Tran B V, Nguyen D D, Ngo S I, et al. Hydrodynamics and simulation of air-water homogeneous bubble column under elevated pressure[J]. AIChE Journal, 2019, 65(10): e16685. |
9 | 张华海, 王铁峰. CFD-PBM耦合模型模拟气液鼓泡床的通用性研究[J]. 化工学报, 2019, 70(2): 487-495. |
Zhang H H, Wang T F. Generality of CFD-PBM coupled model for simulations of gas-liquid bubble column[J]. CIESC Journal, 2019, 70(2): 487-495. | |
10 | 王珏, 杨宁. 基于EMMS方法的鼓泡塔反应器CFD及群平衡模拟[J]. 化工学报, 2017, 68(7): 2667-2677. |
Wang J, Yang N. CFD-PBM simulation with EMMS correctors for bubble column reactors[J]. CIESC Journal, 2017, 68(7): 2667-2677. | |
11 | Hoppe F, Breuer M. A deterministic and viable coalescence model for Euler-Lagrange simulations of turbulent microbubble-laden flows[J]. International Journal of Multiphase Flow, 2018, 99: 213-230. |
12 | Luo H A, Svendsen H F. Theoretical model for drop and bubble breakup in turbulent dispersions[J]. AIChE Journal, 1996, 42(5): 1225-1233. |
13 | Solsvik J, Jakobsen H A. Single air bubble breakup experiments in stirred water tank[J]. International Journal of Chemical Reactor Engineering, 2015, 13(4): 477-491. |
14 | Han L C, Gong S G, Ding Y W, et al. Consideration of low viscous droplet breakage in the framework of the wide energy spectrum and the multiple fragments[J]. AIChE Journal, 2015, 61(7): 2147-2168. |
15 | Lau Y M, Bai W, Deen N G, et al. Numerical study of bubble break-up in bubbly flows using a deterministic Euler-Lagrange framework[J]. Chemical Engineering Science, 2014, 108: 9-22. |
16 | Darmana D, Deen N G, Kuipers J A M. Parallelization of an Euler-Lagrange model using mixed domain decomposition and a mirror domain technique: application to dispersed gas-liquid two-phase flow[J]. Journal of Computational Physics, 2006, 220(1): 216-248. |
17 | Sungkorn R, Derksen J J, Khinast J G. Euler-Lagrange modeling of a gas-liquid stirred reactor with consideration of bubble breakage and coalescence[J]. AIChE Journal, 2012, 58(5): 1356-1370. |
18 | Prince M J, Blanch H W. Bubble coalescence and break-up in air-sparged bubble columns[J]. AIChE Journal, 1990, 36(10): 1485-1499. |
19 | Martínez-Bazán C, Montañés J L, Lasheras J C. On the breakup of an air bubble injected into a fully developed turbulent flow(Part 1): Breakup frequency[J]. Journal of Fluid Mechanics, 1999, 401: 157-182. |
20 | Hoppe F, Breuer M. A deterministic breakup model for Euler-Lagrange simulations of turbulent microbubble-laden flows[J]. International Journal of Multiphase Flow, 2020, 123: 103119. |
21 | Hagesaether L, Jakobsen H A, Svendsen H F. A model for turbulent binary breakup of dispersed fluid particles[J]. Chemical Engineering Science, 2002, 57(16): 3251-3267. |
22 | Martínez-Bazán C, Montañés J L, Lasheras J C. On the breakup of an air bubble injected into a fully developed turbulent flow(Part 2): Size PDF of the resulting daughter bubbles[J]. Journal of Fluid Mechanics, 1999, 401: 183-207. |
23 | Han L C, Luo H A, Liu Y J. A theoretical model for droplet breakup in turbulent dispersions[J]. Chemical Engineering Science, 2011, 66(4): 766-776. |
24 | Wilkinson P M, Van Schayk A, Spronken J P M, et al. The influence of gas density and liquid properties on bubble breakup[J]. Chemical Engineering Science, 1993, 48(7): 1213-1226. |
25 | Keim N C. Perturbed breakup of gas bubbles in water: memory, gas flow, and coalescence[J]. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 2011, 83(5 Pt 2): 056325. |
26 | Li B B, Zhang H C, Lu J, et al. Experimental investigation of the effect of ambient pressure on laser-induced bubble dynamics[J]. Optics & Laser Technology, 2011, 43(8): 1499-1503. |
27 | Andersson R, Andersson B. On the breakup of fluid particles in turbulent flows[J]. AIChE Journal, 2006, 52(6): 2020-2030. |
28 | Ravelet F, Colin C, Risso F. On the dynamics and breakup of a bubble rising in a turbulent flow[J]. Physics of Fluids, 2011, 23(10): 103301. |
29 | Zhang H H, Wang Y L, Sayyar A, et al. Experimental study on breakup of a single bubble in a stirred tank: effect of gas density and liquid properties[J]. AIChE Journal, 2023, 69(1): e17511. |
30 | Zhang H H, Wang Y L, Sayyar A, et al. A CFD-PBM coupled model under entire turbulent spectrum for simulating a bubble column with highly viscous media[J]. AIChE Journal, 2023, 69(1): e17473. |
31 | 张华海, 王悦琳, 李邦昊, 等. 湍流中气泡破碎建模与实验研究进展[J]. 化工学报, 2021, 72(12): 5936-5954. |
Zhang H H, Wang Y L, Li B H, et al. Review of bubble breakup modelling and experimental study in turbulent flow[J]. CIESC Journal, 2021, 72(12): 5936-5954. | |
32 | Lehr F, Mewes D. A transport equation for the interfacial area density applied to bubble columns[J]. Chemical Engineering Science, 2001, 56(3): 1159-1166. |
33 | Wang T F, Wang J F, Jin Y. A novel theoretical breakup kernel function for bubbles/droplets in a turbulent flow[J]. Chemical Engineering Science, 2003, 58(20): 4629-4637. |
34 | Lehr F, Millies M, Mewes D. Bubble-size distributions and flow fields in bubble columns[J]. AIChE Journal, 2002, 48(11): 2426-2443. |
35 | Xing C T, Wang T F, Guo K Y, et al. A unified theoretical model for breakup of bubbles and droplets in turbulent flows[J]. AIChE Journal, 2015, 61(4): 1391-1403. |
36 | Zhang H H, Yang G Y, Sayyar A, et al. An improved bubble breakup model in turbulent flow[J]. Chemical Engineering Journal, 2020, 386: 121484. |
37 | Xue J, Chen F G, Yang N, et al. Eulerian-Lagrangian simulation of bubble coalescence in bubbly flow using the spring-dashpot model[J]. Chinese Journal of Chemical Engineering, 2017, 25(3): 249-256. |
38 | Zhang X S, Wang J H, Wan D C. Euler-Lagrange study of bubble breakup and coalescence in a turbulent boundary layer for bubble drag reduction[J]. Physics of Fluids, 2021, 33(3): 037105. |
39 | Sommerfeld M, Bourloutski E, Bröder D. Euler/Lagrange calculations of bubbly flows with consideration of bubble coalescence[J]. The Canadian Journal of Chemical Engineering, 2003, 81(3/4): 508-518. |
40 | Jain D, Kuipers J A M, Deen N G. Numerical study of coalescence and breakup in a bubble column using a hybrid volume of fluid and discrete bubble model approach[J]. Chemical Engineering Science, 2014, 119: 134-146. |
41 | Smagorinsky J. General circulation experiments with the primitive equations[J]. Monthly Weather Review, 1963, 91(3): 99-164. |
42 | Yan X K, Zheng K X, Jia Y, et al. Drag coefficient prediction of a single bubble rising in liquids[J]. Industrial & Engineering Chemistry Research, 2018, 57(15): 5385-5393. |
43 | Tomiyama A. Struggle with computational bubble dynamics[J]. Multiphase Science and Technology, 1998, 10(4): 369-405. |
44 | Deen N G, Solberg T, Hjertager B H. Large eddy simulation of the gas-liquid flow in a square cross-sectioned bubble column[J]. Chemical Engineering Science, 2001, 56(21/22): 6341-6349. |
45 | Lau Y M, Sujatha K T, Gaeini M, et al. Experimental study of the bubble size distribution in a pseudo-2D bubble column[J]. Chemical Engineering Science, 2013, 98: 203-211. |
46 | Zhou Y J, Zhao C R, Ji B Q, et al. Numerical simulation of bubbly flow using partially averaged Navier-Stokes simulation and a path oscillation model in the Euler-Lagrange approach[J]. Industrial & Engineering Chemistry Research, 2021, 60(10): 4120-4130. |
[1] | 王学云, 郁肖兵, 彭万旺, 沈岩松. 熔渣气化炉喷嘴燃烧区行为的数值模拟研究[J]. 化工学报, 2024, 75(2): 659-674. |
[2] | 赵碧丹, 代伊杨, 王军武, 张永民. CFD-DEM-IBM方法探究流化床倾斜挡板内构件受力特性[J]. 化工学报, 2024, 75(1): 255-267. |
[3] | 崔怡洲, 李成祥, 翟霖晓, 刘束玉, 石孝刚, 高金森, 蓝兴英. 亚毫米气泡和常规尺寸气泡气液两相流流动与传质特性对比[J]. 化工学报, 2024, 75(1): 197-210. |
[4] | 闻文, 王慧艳, 周静红, 曹约强, 周兴贵. 石墨负极颗粒对锂离子电池容量衰减及SEI膜生长影响的模拟研究[J]. 化工学报, 2024, 75(1): 366-376. |
[5] | 赵文琪, 邓燕君, 朱春英, 付涛涛, 马友光. 纳米粒子稳定的Pickering乳液及其液滴聚并动力学研究进展[J]. 化工学报, 2024, 75(1): 33-46. |
[6] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[7] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[8] | 袁佳琦, 刘政, 黄锐, 张乐福, 贺登辉. 泡状入流条件下旋流泵能量转换特性研究[J]. 化工学报, 2023, 74(9): 3807-3820. |
[9] | 岳林静, 廖艺涵, 薛源, 李雪洁, 李玉星, 刘翠伟. 凹坑缺陷对厚孔板喉部空化流动特性影响研究[J]. 化工学报, 2023, 74(8): 3292-3308. |
[10] | 王海, 林宏, 王晨, 许浩洁, 左磊, 王军锋. 高压静电场强化多孔介质表面沸腾传热特性研究[J]. 化工学报, 2023, 74(7): 2869-2879. |
[11] | 陈朝光, 贾玉香, 汪锰. 以低浓度废酸驱动中和渗析脱盐的模拟与验证[J]. 化工学报, 2023, 74(6): 2486-2494. |
[12] | 王泽栋, 石至平, 刘丽艳. 考虑气泡非均匀耗散的矩形反应器声流场数值模拟及结构优化[J]. 化工学报, 2023, 74(5): 1965-1973. |
[13] | 张银宁, 王进卿, 冯致, 詹明秀, 徐旭, 张光学, 池作和. 升温条件下多孔介质内气泡的生长和聚并行为[J]. 化工学报, 2023, 74(4): 1509-1518. |
[14] | 罗来明, 张劲, 郭志斌, 王海宁, 卢善富, 相艳. 1~5 kW高温聚合物电解质膜燃料电池堆的理论模拟与组装测试[J]. 化工学报, 2023, 74(4): 1724-1734. |
[15] | 项星宇, 王忠东, 董艳鹏, 李守川, 朱春英, 马友光, 付涛涛. 微通道内屈服应力型流体的流变特性及多相流研究进展[J]. 化工学报, 2023, 74(2): 546-558. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||