化工学报 ›› 2024, Vol. 75 ›› Issue (3): 967-973.DOI: 10.11949/0438-1157.20231248
收稿日期:
2023-12-01
修回日期:
2024-01-08
出版日期:
2024-03-25
发布日期:
2024-05-11
通讯作者:
王沛
作者简介:
王沛(1986—),男,博士,教授,franciswp2012@163.com
基金资助:
Pei WANG1(), Ruiming DUAN1, Guangru ZHANG2, Wanqin JIN2
Received:
2023-12-01
Revised:
2024-01-08
Online:
2024-03-25
Published:
2024-05-11
Contact:
Pei WANG
摘要:
光热驱动的甲烷重整制氢技术,是将太阳能转化为燃料的主要技术路径之一。引入聚光集热技术,可实现太阳能的全光谱利用,有效提高太阳能到燃料化学能的转化效率,同时显著降低系统能耗及碳排放。将多孔碳化硅吸热体和La1-x Sr x Co1-y Fe y O3-δ 钙钛矿透氧膜结合,提出一种光热驱动的膜反应制氢的设计思路,实现了连续、高效的制氢过程。完成了该反应过程的概念设计,建立考虑辐射-传热-膜分离-反应的数值模型并进行仿真模拟;重点评估了膜表面的温度均匀性,并分析温度对膜内反应及出口产物的影响规律。结果表明,该模型可以有效精准描述概念设计过程。研究成果可为光热驱动的高温膜反应器设计和放大提供理论依据以及初步设计方法。
中图分类号:
王沛, 段睿明, 张广儒, 金万勤. 光热驱动的膜分离生物甲烷制氢过程建模与仿真分析[J]. 化工学报, 2024, 75(3): 967-973.
Pei WANG, Ruiming DUAN, Guangru ZHANG, Wanqin JIN. Modeling and simulation analysis of solar driven membrane separation biomethane hydrogen production process[J]. CIESC Journal, 2024, 75(3): 967-973.
参数 | 数值 |
---|---|
反应器直径/mm | 70 |
多孔SiC厚度/mm | 50 |
透氧膜外径/mm | 5 |
透氧膜内径/mm | 4 |
透氧膜长度/mm | 45 |
多孔SiC与透氧膜的距离/mm | 5 |
透氧膜距反应器轴线距离/mm | 20 |
表1 反应器的主要几何尺寸
Table 1 Main geometric dimensions of reactor
参数 | 数值 |
---|---|
反应器直径/mm | 70 |
多孔SiC厚度/mm | 50 |
透氧膜外径/mm | 5 |
透氧膜内径/mm | 4 |
透氧膜长度/mm | 45 |
多孔SiC与透氧膜的距离/mm | 5 |
透氧膜距反应器轴线距离/mm | 20 |
参数 | 公式 |
---|---|
正向反应速率常数/(cm/(atm0.5⋅s)) | |
逆向反应速率常数/(mol/(cm2⋅s)) | |
氧空位的扩散系数/(cm2/s) |
表2 反应动力学参数
Table 2 Parameters of reaction kinetics
参数 | 公式 |
---|---|
正向反应速率常数/(cm/(atm0.5⋅s)) | |
逆向反应速率常数/(mol/(cm2⋅s)) | |
氧空位的扩散系数/(cm2/s) |
边界条件 | 数值 |
---|---|
入射太阳辐射/W | 4924 |
入口空气压力/atm | 1 |
入口空气流速/(m/s) | 1 |
入口空气温度/℃ | 28.5 |
入口空气中O2质量分数 | 0.21 |
入口CH4压力/atm | 1 |
入口CH4流速/(m/s) | 0.2 |
入口CH4温度/℃ | 20 |
入口CH4中O2质量分数 | 10-6 |
表3 反应器的边界条件
Table 3 Boundary conditions of reactor
边界条件 | 数值 |
---|---|
入射太阳辐射/W | 4924 |
入口空气压力/atm | 1 |
入口空气流速/(m/s) | 1 |
入口空气温度/℃ | 28.5 |
入口空气中O2质量分数 | 0.21 |
入口CH4压力/atm | 1 |
入口CH4流速/(m/s) | 0.2 |
入口CH4温度/℃ | 20 |
入口CH4中O2质量分数 | 10-6 |
方案 | 网格数/个 | 出口H2的平均 摩尔分数/% | 出口CO的平均 摩尔分数/% |
---|---|---|---|
1 | 34333 | 20.197 | 29.636 |
2 | 57340 | 20.503 | 30.123 |
3 | 84870 | 20.512 | 30.134 |
表4 网格独立性验证方案
Table 4 Grid independence test schemes
方案 | 网格数/个 | 出口H2的平均 摩尔分数/% | 出口CO的平均 摩尔分数/% |
---|---|---|---|
1 | 34333 | 20.197 | 29.636 |
2 | 57340 | 20.503 | 30.123 |
3 | 84870 | 20.512 | 30.134 |
温度/℃ | SCO/% | H2/CO | |||||||
---|---|---|---|---|---|---|---|---|---|
实验 | Jin模型 | 本文模型 | 实验 | Jin模型 | 本文模型 | 实验 | Jin模型 | 本文模型 | |
825 | 97.3 | 97.2 | 97.2 | 97 | 98.9 | 97.7 | 1.69 | 2 | 1.66 |
850 | 100 | 99.7 | 99.4 | 100 | 97.9 | 97.2 | 1.68 | 2 | 1.62 |
885 | 96.7 | 100 | 99.8 | 98 | 97.8 | 97.2 | 1.96 | 2 | 1.87 |
表5 模型准确性验证
Table 5 Accuracy validation of model
温度/℃ | SCO/% | H2/CO | |||||||
---|---|---|---|---|---|---|---|---|---|
实验 | Jin模型 | 本文模型 | 实验 | Jin模型 | 本文模型 | 实验 | Jin模型 | 本文模型 | |
825 | 97.3 | 97.2 | 97.2 | 97 | 98.9 | 97.7 | 1.69 | 2 | 1.66 |
850 | 100 | 99.7 | 99.4 | 100 | 97.9 | 97.2 | 1.68 | 2 | 1.62 |
885 | 96.7 | 100 | 99.8 | 98 | 97.8 | 97.2 | 1.96 | 2 | 1.87 |
1 | Bayon A, de la Calle A, Ghose K K, et al. Experimental, computational and thermodynamic studies in perovskites metal oxides for thermochemical fuel production: a review[J]. International Journal of Hydrogen Energy, 2020, 45(23): 12653-12679. |
2 | Wang P, Wei R K, Vafai K. A dual-scale transport model of the porous ceria based on solar thermochemical cycle water splitting hydrogen production[J]. Energy Conversion and Management, 2022, 272: 116363. |
3 | 邢卫红, 汪勇, 陈日志, 等. 膜与膜反应器: 现状、挑战与机遇[J]. 中国科学: 化学, 2014, 44(9): 1469-1481. |
Xing W H, Wang Y, Chen R Z, et al. Membranes and membrane reactors: state of the art, challenges, and opportunities[J]. Scientia Sinica Chimica, 2014, 44(9): 1469-1481. | |
4 | Wang Z G, Chen T J, Dewangan N, et al. Catalytic mixed conducting ceramic membrane reactors for methane conversion[J]. Reaction Chemistry & Engineering, 2020, 5(10): 1868-1891. |
5 | Dong X L, Jin W Q, Xu N P, et al. Dense ceramic catalyticmembranes and membrane reactors for energy and environmental applications[J]. Chemical Communications, 2011, 47(39): 10886-10902. |
6 | 金万勤, 徐南平. 混合导体透氧膜材料的设计与应用[J]. 化工进展, 2006, 25(10): 1143-1151. |
Jin W Q, Xu N P. Design and application of oxygen-permeable membrane materials of mixed conducting oxides[J]. Chemical Industry and Engineering Progress, 2006, 25(10): 1143-1151. | |
7 | Jin W, Gu X, Li S, et al. Experimental and simulation study on a catalyst packed tubular dense membrane reactor for partial oxidation of methane to syngas[J]. Chemical Engineering Science, 2000, 55(14): 2617-2625. |
8 | Jiang K P, Liu Z K, Zhang G R, et al. A novel catalytic membrane reactor with homologous exsolution-based perovskite catalyst[J]. Journal of Membrane Science, 2020, 608: 118213. |
9 | Zhu J W, Guo S B, Liu G P, et al. A robust mixed-conducting multichannel hollow fiber membrane reactor[J]. AIChE Journal, 2015, 61(8): 2592-2599. |
10 | Wang H S, Liu M K, Kong H, et al. Thermodynamic analysis on mid/low temperature solar methane steam reforming with hydrogen permeation membrane reactors[J]. Applied Thermal Engineering, 2019, 152: 925-936. |
11 | Wang B Z, Kong H, Wang H S, et al. Kinetic and thermodynamic analyses of mid/low-temperature ammonia decomposition in solar-driven hydrogen permeation membrane reactor[J]. International Journal of Hydrogen Energy, 2019, 44(49): 26874-26887. |
12 | Wang X C, Wang B Z, Wang M, et al. Cyclohexane dehydrogenation in solar-driven hydrogen permeation membrane reactor for efficient solar energy conversion and storage[J]. Journal of Thermal Science, 2021, 30(5): 1548-1558. |
13 | Kalogirou S A. Solar thermal collectors and applications[J]. Progress in Energy and Combustion Science, 2004, 30(3): 231-295. |
14 | Tou M, Michalsky R, Steinfeld A. Solar-driven thermochemical splitting of CO2 and in situ separation of CO and O2 across a ceria redox membrane reactor[J]. Joule, 2017, 1(1): 146-154. |
15 | Tou M, Jin J, Hao Y, et al. Solar-driven co-thermolysis of CO2 and H2O promoted by in situ oxygen removal across a non-stoichiometric ceria membrane[J]. Reaction Chemistry & Engineering, 2019, 4(8): 1431-1438. |
16 | Hosseini S E, Wahid M A. Hydrogen from solar energy, a clean energy carrier from a sustainable source of energy[J]. International Journal of Energy Research, 2020, 44(6): 4110-4131. |
17 | 王沛, 李嘉宝, 赵亮, 等. 塔式太阳能熔盐吸热器传热特性及㶲分析[J]. 中国电机工程学报, 2019, 39(12): 3605-3614. |
Wang P, Li J B, Zhao L, et al. Thermal and exergy performance of molten salt external cylindrical receiver of solar power towers[J]. Proceedings of the CSEE, 2019, 39(12): 3605-3614. | |
18 | Song H, Luo S Q, Huang H M, et al. Solar-driven hydrogen production: recent advances, challenges, and future perspectives[J]. ACS Energy Letters, 2022, 7(3): 1043-1065. |
19 | 王沛, 李嘉宝, 周领, 等. 太阳能热化学反应器多场耦合及协同优化研究[J]. 太阳能学报, 2022, 43(9): 527-534. |
Wang P, Li J B, Zhou L, et al. Multi-field coupling modeling and cooperative optimization of solar thermal chemical reactor[J]. Acta Energiae Solaris Sinica, 2022, 43(9): 527-534. | |
20 | Wang P, Li J B, Xu R N, et al. Non-uniform and volumetric effect on the hydrodynamic and thermal characteristic in a unit solar absorber[J]. Energy, 2021, 225: 120130. |
21 | Li J B, Wang P, Liu D Y. Optimization on the gradually varied pore structure distribution for the irradiated absorber[J]. Energy, 2022, 240: 122787. |
22 | Wu Z Y, Caliot C, Bai F W, et al. Experimental and numerical studies of the pressure drop in ceramic foams for volumetric solar receiver applications[J]. Applied Energy, 2010, 87(2): 504-513. |
23 | Wu Z Y, Caliot C, Flamant G, et al. Numerical simulation of convective heat transfer between air flow and ceramic foams to optimise volumetric solar air receiver performances[J]. International Journal of Heat and Mass Transfer, 2011, 54(7/8): 1527-1537. |
24 | Wang P, Vafai K, Liu D Y, et al. Analysis of collimated irradiation under local thermal non-equilibrium condition in a packed bed[J]. International Journal of Heat and Mass Transfer, 2015, 80: 789-801. |
25 | Hendricks T J, Howell J R. Absorption/scattering coefficients and scattering phase functions in reticulated porous ceramics[J]. Journal of Heat Transfer, 1996, 118(1): 79-87. |
26 | Tan X Y, Li K. Modeling of air separation in a LSCF hollow-fiber membrane module[J]. AIChE Journal, 2002, 48(7): 1469-1477. |
27 | Xu S J, Thomson W J. Oxygen permeation rates through ion-conducting perovskite membranes[J]. Chemical Engineering Science, 1999, 54(17): 3839-3850. |
28 | Tsai C Y. Perovskite dense membrane reactors for the partial oxidation of methane to synthesis gas[D]. Worcester: Worcester Polytechnic Institute, 1996. |
29 | Blanks R F, Wittrig T S, Peterson D A. Bidirectional adiabatic synthesis gas generator[J]. Chemical Engineering Science, 1990, 45(8): 2407-2413. |
30 | Habib M A, Haque M A, Harale A, et al. Palladium-alloy membrane reactors for fuel reforming and hydrogen production: hydrogen production modeling[J]. Case Studies in Thermal Engineering, 2023, 49: 103359. |
[1] | 董益斌, 熊敬超, 王敬宇, 汪守康, 王亚飞, 黄群星. 融合激光雷达料位测算的锅炉燃烧优化模型预测控制[J]. 化工学报, 2024, 75(3): 924-935. |
[2] | 李诗浩, 吴振华, 赵展烽, 吴洪, 杨冬, 石家福, 姜忠义. 化工过程中的电子传递、质子传递和分子传递[J]. 化工学报, 2024, 75(3): 1052-1064. |
[3] | 刘志鹏, 赵长颖, 吴睿, 张智昊. 基于水电解制氢的梯度多孔传输层中气液流动可视化实验研究[J]. 化工学报, 2024, 75(2): 520-530. |
[4] | 曹宇, 张国辉, 高昂, 杜心宇, 周静, 蔡永茂, 余璇, 于晓明. 二维MXene材料在太阳能电池和金属离子电池中的研究进展[J]. 化工学报, 2024, 75(2): 412-428. |
[5] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[6] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[7] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[8] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[9] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[10] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[11] | 傅予, 刘兴翀, 王瀚雨, 李海敏, 倪亚飞, 邹文静, 雷月, 彭永姗. F3EACl修饰层对钙钛矿太阳能电池性能提升的研究[J]. 化工学报, 2023, 74(8): 3554-3563. |
[12] | 邵伟明, 韩文学, 宋伟, 杨勇, 陈灿, 赵东亚. 基于分布式贝叶斯隐马尔可夫回归的动态软测量建模方法[J]. 化工学报, 2023, 74(6): 2495-2502. |
[13] | 周小文, 杜杰, 张战国, 许光文. 基于甲烷脉冲法的Fe2O3-Al2O3载氧体还原特性研究[J]. 化工学报, 2023, 74(6): 2611-2623. |
[14] | 李勇, 高佳琦, 杜超, 赵亚丽, 李伯琼, 申倩倩, 贾虎生, 薛晋波. Ni@C@TiO2核壳双重异质结的构筑及光热催化分解水产氢[J]. 化工学报, 2023, 74(6): 2458-2467. |
[15] | 张生安, 刘桂莲. 高效太阳能电解水制氢系统及其性能的多目标优化[J]. 化工学报, 2023, 74(3): 1260-1274. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 481
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 168
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||