化工学报 ›› 2024, Vol. 75 ›› Issue (4): 1508-1518.DOI: 10.11949/0438-1157.20231410
臧雅晴1,2(), 张益钧1,2(
), 王金钊1,2(
), 王倩1,2(
), 李殿卿1,2, 冯俊婷1,2(
), 段雪1,2
收稿日期:
2023-12-31
修回日期:
2024-02-03
出版日期:
2024-04-25
发布日期:
2024-06-06
通讯作者:
王倩,冯俊婷
作者简介:
臧雅晴(1998—),女,硕士研究生,z18132707326@163.com基金资助:
Yaqing ZANG1,2(), Yijun ZHANG1,2(
), Jinzhao WANG1,2(
), Qian WANG1,2(
), Dianqing LI1,2, Junting FENG1,2(
), Xue DUAN1,2
Received:
2023-12-31
Revised:
2024-02-03
Online:
2024-04-25
Published:
2024-06-06
Contact:
Qian WANG, Junting FENG
摘要:
在降低工业热脱水工艺能耗的迫切需求下,基于反应耦合基本原理,报道了一种低温水煤气变换反应耦合水合氯化钙低能耗脱水的新策略。以工业水合氯化钙为原料,将其中具有一定化学反应活性的结晶水作为反应物与CO耦合反应,在413 K下即可制备得到符合国家标准(GB/T 26520—2021)要求的Ⅰ型工业无水氯化钙产品(CaCl2·0.38H2O),较在N2条件下获得同等结晶水含量产品的处理时间缩短了1/3,说明耦合催化脱水策略在降低过程能耗方面具有优势。原位FTIR和CO-TPD-MS实验研究表明,CO可化学吸附或准化学吸附于水合氯化钙样品表面,结合MS分析在脱水产物中检测到CO2和H2,说明发生了一定程度的耦合催化脱水。进一步,对所得无水氯化钙样品进行SEM、压汞测试及水蒸气吸附测试,结果表明,与CO耦合反应使得无水CaCl2样品形成了较为丰富的孔结构,在作为干燥剂使用时有利于增加与水的接触面积,从而使其表现出比商用无水氯化钙更快的吸水速率。本工作报道的低能耗耦合催化脱水策略有望拓展至更多材料的脱水环节。
中图分类号:
臧雅晴, 张益钧, 王金钊, 王倩, 李殿卿, 冯俊婷, 段雪. 基于反应耦合的低能耗水合氯化钙脱水制无水氯化钙[J]. 化工学报, 2024, 75(4): 1508-1518.
Yaqing ZANG, Yijun ZHANG, Jinzhao WANG, Qian WANG, Dianqing LI, Junting FENG, Xue DUAN. Low energy consumption preparation of anhydrous calcium chloride from hydrated calcium chloride based on reaction coupling[J]. CIESC Journal, 2024, 75(4): 1508-1518.
1 | Wu Z H, Hu Y J, Lee D J, et al. Dewatering and drying in mineral processing industry: potential for innovation[J]. Drying Technology, 2010, 28(7): 834-842. |
2 | 王光宇, 张锴, 张凯华, 等. 微波加热干燥煤泥热质传递及其能耗特性分析[J]. 化工学报, 2023, 74(6): 2382-2390. |
Wang G Y, Zhang K, Zhang K H, et al. Heat and mass transfer and energy consumption for microwave drying of coal slime[J]. CIESC Journal, 2023, 74(6): 2382-2390. | |
3 | Rammelberg H, Lélé A F, et al. A review on the use of calcium chloride in applied thermal engineering[J]. Applied Thermal Engineering, 2015, 75: 513-531. |
4 | Daloee T S, Behbahani F K. MgCl2 and its applications in organic chemistry and biochemistry: a review[J]. Molecular Diversity, 2020, 24(2): 463-476. |
5 | Zhu X Y, Zhai C, Xu J Z, et al. Effects of proportion of anhydrous CaCl2 on the expansion properties of soundless cracking agents[J]. Energy & Fuels, 2022, 36(14): 7507-7518. |
6 | 潘煜, 王子航, 王佳韵, 等. 基于可得然-氯化锂复合吸附剂的除湿换热器热湿性能研究[J]. 化工学报, 2023, 74(3):1352-1359. |
Pan Y, Wang Z H, Wang J Y, et al. Heat and moisture performance study of Cur-LiCl coated heat exchanger[J]. CIESC Journal, 2023, 74(3): 1352-1359. | |
7 | Gruszkiewicz M S, Simonson J M. Vapor pressures and isopiestic molalities of concentrated CaCl2(aq), CaBr2(aq), and NaCl(aq) to T=523 K[J]. The Journal of Chemical Thermodynamics, 2005, 37(9): 906-930. |
8 | Mohammad A F, Mourad A A H, Al-Marzouqi A H, et al. Multistage modified Solvay process based on calcium oxide for carbon dioxide capture and reject brine desalination[J]. Separation and Purification Technology, 2024, 328: 125000. |
9 | Audah N, Ghaddar N, Ghali K. Optimized solar-powered liquid desiccant system to supply building fresh water and cooling needs[J]. Applied Energy, 2011, 88(11): 3726-3736. |
10 | Tsubogo T, Yamashita Y, Kobayashi S. Calcium chloride (CaCl2) as catalyst for asymmetric organic reactions[J]. Topics in Catalysis, 2014, 57(10): 935-939. |
11 | 张荣, 王瑞林, 刘晓菲, 等. 无水氯化钙工艺技术改进与应用[J]. 盐科学与化工, 2021, 50(10): 45-46. |
Zhang R, Wang R L, Liu X F, et al. Technical improvement and application of anhydrous calcium chloride[J]. Journal of Salt Science and Chemical Industry, 2021, 50(10): 45-46. | |
12 | Zhao J Q, Bai Y, Li Z H, et al. Plasmonic Cu nanoparticles for the low-temperature photo-driven water-gas shift reaction[J]. Angewandte Chemie International Edition, 2023, 62(13): e202219299. |
13 | Yuan K, Sun X C, Yin H J, et al. Boosting the water gas shift reaction on Pt/CeO2-based nanocatalysts by compositional modification: support doping versus bimetallic alloying[J]. Journal of Energy Chemistry, 2022, 67: 241-249. |
14 | Polo-Garzon F, Fung V, Nguyen L, et al. Elucidation of the reaction mechanism for high-temperature water gas shift over an industrial-type copper-chromium-iron oxide catalyst[J]. Journal of the American Chemical Society, 2019, 141(19): 7990-7999. |
15 | Fu Y J, Wang J Z, Zang Y Q, et al. A new catalytic dehydration strategy by coupling chloride hydrate dehydration with water-gas shift reaction[J]. Chemical Engineering Science, 2024, 285: 119542. |
16 | Smeets B, Iype E, Nedea S V, et al. A DFT based equilibrium study on the hydrolysis and the dehydration reactions of MgCl2 hydrates[J]. The Journal of Chemical Physics, 2013, 139(12): 124312. |
17 | Karunadasa K S P, Manoratne C H, Pitawala H M T G A, et al. Relative stability of hydrated/anhydrous products of calcium chloride during complete dehydration as examined by high-temperature X-ray powder diffraction[J]. Journal of Physics and Chemistry of Solids, 2018, 120: 167-172. |
18 | 国家市场监督管理总局, 国家标准化管理委员会. 工业氯化钙: [S]. 北京: 中国标准出版社, 2021. |
State Administration for Market Regulation, Standardization Administration of the People's Republic of China. Calcium chloride for industrial use: [S]. Beijing: Standards Press of China, 2021. | |
19 | Kirsh Y, Yariv S, Shoval S. Kinetic analysis of thermal dehydration and hydrolysis of MgCl2·6H2O by DTA and TG[J]. Journal of Thermal Analysis, 1987, 32(2): 393-408. |
20 | Ma J H, Ren S H, Li R F, et al. CO-ftir characterization of PVP-protected Pt nanoclusters on zeolite beta[J]. International Journal of Nanoscience, 2004, 3(3): 247-254. |
21 | Nowitzki T, Borchert H, Jürgens B, et al. UHV studies of methanol decomposition on mono- and bimetallic CoPd nanoparticles supported on thin alumina films[J]. ChemPhysChem, 2008, 9(5): 729-739. |
22 | Galhenage R P, Yan H, Ahsen A S, et al. Understanding the growth and chemical activity of CO-Pt bimetallic clusters on TiO2(110): CO adsorption and methanol reaction[J]. The Journal of Physical Chemistry C, 2014, 118(31): 17773-17786. |
23 | Chen J L, Markovits A, Zhang R Q. Peculiar adsorption induced by strong hydrogen bonds on perfect anatase (0 0 1) surface[J]. Applied Surface Science, 2022, 594: 153397. |
24 | Gough R V, Chevrier V F, Tolbert M A. Formation of liquid water at low temperatures via the deliquescence of calcium chloride: implications for Antarctica and Mars[J]. Planetary and Space Science, 2016, 131: 79-87. |
25 | Shen J X, Tian X K, Zhu X Y, et al. Properties of porous zirconia ceramics fabricated by using various pore-forming agents[J]. Ceramics International, 2022, 48(17): 25094-25102. |
26 | Thommes M, Kaneko K, Neimark A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report)[J]. Pure and Applied Chemistry, 2015, 87(9/10): 1051-1069. |
27 | Zhang R X, Panesar D K. Water absorption of carbonated reactive MgO concrete and its correlation with the pore structure[J]. Journal of CO2 Utilization, 2018, 24: 350-360. |
28 | Furukawa H, Gándara F, Zhang Y B, et al. Water adsorption in porous metal-organic frameworks and related materials[J]. Journal of the American Chemical Society, 2014, 136(11): 4369-4381. |
29 | Kim H, Yang S, Rao S R, et al. Water harvesting from air with metal-organic frameworks powered by natural sunlight[J]. Science, 2017, 356(6336): 430-434. |
30 | Cadiau A, Belmabkhout Y, Adil K, et al. Hydrolytically stable fluorinated metal-organic frameworks for energy-efficient dehydration[J]. Science, 2017, 356(6339): 731-735. |
31 | Zhang X P, Yang J C, Borayek R, et al. Super-hygroscopic film for wearables with dual functions of expediting sweat evaporation and energy harvesting[J]. Nano Energy, 2020, 75: 104873. |
32 | 王旭, 张乐瑶, 张昊轩, 等. 中空孔结构对W掺杂MFI分子筛丙酮吸附行为的研究[J]. 化工学报, 2022, 73(3): 1194-1206. |
Wang X, Zhang L Y, Zhang H X, et al. Effect of hollow structure on the acetone adsorption property of tungsten-substituted MFI zeolite[J]. CIESC Journal, 2022, 73(3): 1194-1206. | |
33 | Towsif Abtab S M, Alezi D, Bhatt P M, et al. Reticular chemistry in action: a hydrolytically stable MOF capturing twice its weight in adsorbed water[J]. Chem, 2018, 4(1): 94-105. |
[1] | 王佳琪, 魏皓琦, 苟阿静, 刘佳兴, 周昕霖, 葛坤. 纳米粒子作用下CO2水合物生成机理研究[J]. 化工学报, 2024, 75(3): 956-966. |
[2] | 于旭东, 李琪, 陈念粗, 杜理, 任思颖, 曾英. 三元体系KCl + CaCl2 + H2O 298.2、323.2及348.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(8): 3256-3265. |
[3] | 龙臻, 王谨航, 任俊杰, 何勇, 周雪冰, 梁德青. 离子液体协同PVCap抑制天然气水合物生成实验研究[J]. 化工学报, 2023, 74(6): 2639-2646. |
[4] | 徐文超, 孙志高, 李翠敏, 李娟, 黄海峰. 静态条件下表面活性剂E-1310对HCFC-141b水合物生成的影响[J]. 化工学报, 2023, 74(5): 2179-2185. |
[5] | 李明川, 樊栓狮, 徐赋海, 卢惠东, 李晓军. 水合物热分解Stefan相变模型解的存在性及Laplace变换求解[J]. 化工学报, 2023, 74(4): 1746-1754. |
[6] | 龙臻, 王谨航, 何勇, 梁德青. 离子液体与动力学抑制剂作用下混合气体水合物生成特性研究[J]. 化工学报, 2023, 74(4): 1703-1711. |
[7] | 胡晗, 杨亮, 李春晓, 刘道平. 天然烟浸滤液水合物法储甲烷动力学研究[J]. 化工学报, 2023, 74(3): 1313-1321. |
[8] | 郑杰元, 张先伟, 万金涛, 范宏. 丁香酚环氧有机硅树脂的制备及其固化动力学研究[J]. 化工学报, 2023, 74(2): 924-932. |
[9] | 高靖博, 孙强, 李青, 王逸伟, 郭绪强. 考虑水合物结构转变的含氢气体水合物相平衡模型[J]. 化工学报, 2023, 74(2): 666-673. |
[10] | 宋彭辉, 张国栋, 王飞. 气体水合物高效生成、分离与储存一体化技术研究[J]. 化工学报, 2023, 74(11): 4670-4678. |
[11] | 蔡进, 王晓辉, 汤涵, 陈光进, 孙长宇. TBAB水溶液体系中半笼型水合物的相平衡预测模型[J]. 化工学报, 2023, 74(1): 408-415. |
[12] | 张炜, 李昊阳, 徐纯刚, 李小森. 气体水合物生成微观机理及分析方法研究进展[J]. 化工学报, 2022, 73(9): 3815-3827. |
[13] | 郎雪梅, 姚柳眉, 樊栓狮, 李刚, 王燕鸿. 多孔材料中甲烷水合物生成的传热数值模拟研究[J]. 化工学报, 2022, 73(9): 3851-3860. |
[14] | 刘振宇. 煤地下气化低效的化学反应工程根源:滞留层及通道中的传质与反应[J]. 化工学报, 2022, 73(8): 3299-3306. |
[15] | 唐翠萍, 张雅楠, 梁德青, 李祥. 聚乙烯己内酰胺链端改性及其对甲烷水合物形成的抑制作用研究[J]. 化工学报, 2022, 73(5): 2130-2139. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 160
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 244
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||